

Consulting Geotechnical & Environmental Engineering Construction Materials Inspection & Testing

PAVEMENT INVESTIGATION & DESIGN REPORT CAWTHRA ROAD IMPROVEMENTS SOUTH SERVICE ROAD TO EASTGATE PARKWAY **CITY OF MISSISSAUGA REGIONAL MUNICIPALITY OF PEEL, ONTARIO**

PREPARED FOR:

IBI Group 175 Galaxy, Suite 100 Toronto, Ontario M9W 0C9

> File No. 1-18-0615 March 19, 2020 © Terraprobe Inc.

Distribution:

1 Copy 1 Copy **IBI Group** Terraprobe Inc., Brampton

Greater Toronto

11 Indell Lane Brampton, Ontario L6T 3Y3 (905) 796-2650 Fax: 796-2250 brampton@terraprobe.ca

Terraprobe Inc. **Central Ontario**

Hamilton - Niagara 903 Barton Street, Unit 22 Stoney Creek, Ontario L8E 5P5 (905) 643-7560 Fax: 643-7559 stoneycreek@terraprobe.ca

220 Bayview Drive, Unit 25

Barrie, Ontario L4N 4Y8 (705) 739-8355 Fax: 739-8369 barrie@terraprobe.ca

Northern Ontario

1012 Kelly Lake Rd., Unit 1 Sudbury, Ontario P3E 5P4 (705) 670-0460 Fax: 670-0558 sudbury@terraprobe.ca

www.terraprobe.ca

TABLE OF CONTENTS

1.0	INTRO	DUCTION1
2.0	SITE A	ND PROJECT DESCRIPTION1
3.0	INVES	FIGATION PROCEDURES1
	3.1 3.2	Current Investigation1 Previous Investigation
4.0	DESCR	RIPTION OF SUBSURFACE CONDITIONS
	4.1 4.1.1 4.2 4.3 4.4	Pavement Structure 2 Pavement Condition 3 Subgrade Soils 4 Topsoil 5 Ground Water 5
5.0	DISCU	SSION AND RECOMMENDATIONS5
	5.1	General
	5.2 5.3	Traffic Data
	5.3.1	Pavement Structure (New Construction - Widening)
	5.3.2	Pavement Structure (Rehabilitation)8
	5.4	Construction Features
	5.4.1	Material Types9
	5.4.1	Padding9
	5.4.2	Asphalt Cement Grade9
	5.4.3	Tack Coat10
	5.4.4	Bus Bays10
	5.4.5	Paved Shoulders
	5.4.6	Subgrade Preparation10
	5.4.7	Fill Materials
	5.4.8	Drainage
	5.4.9	Pipe Culverts
	5.4.10	Compaction of Base & Sub-Base Material
		Pavement Removals
	5.4.12	Reuse of Existing Granular Material
	5.4.13	Stripping
		Frost Penetration and Frost Susceptibility
	5.4.15	Soil Erodibility
	5.4.16	Excavations
	5.5	Soil Chemical Analysis
	5.6	Applicable Standards
	5.7	Sample Results
	5.8	Asbestos

6.0	LIMITA	TIONS AND RISK	15
	6.1	Procedures	15
	6.2	Changes in Site and Scope	15

REFERENCES

LIST OF FIGURES

Figure 1	Site Location Plan
Figures 2 to 7	Site Photographs
Figures 8 to 14	Borehole Location Plans

APPENDICES APPENDIX A

IDIX A Borehole Logs & Core Data

Appendix A1 (Current Investigation)

Abbreviations and Terminology Pavement Borehole Logs Pavement Core Photographs and Data Topsoil Thicknesses

Appendix A2 (Previous Investigation)

Abbreviations and Terminology Borehole Logs

APPENDIX B Laboratory Test Results

Figure B1	Grain Size Distribution – Granular Base/Subbase
Figure B2	Grain Size Distribution – Subgrade (Silty Sand to Sand)
Figure B3	Grain Size Distribution – Subgrade (Silty Clay to Clayey Silt)
Figure B4	Grain Size Distribution - Subgrade (Sand and Gravel to Gravelly Sand)

APPENDIX C Certificates of Chemical Analysis (Soil Chemistry)

Metals and Inorganics Petroleum Hydrocarbons Bulk Asbestos

APPENDIX D	Falling Weight	Deflectometer	Testing	Results
------------	----------------	---------------	---------	---------

APPENDIX E Flexible Pavement Condition Evaluation Forms

APPENDIX F Pavement Design Data

Table F1/F1a	Equivalent Single Axle Load Calculations (0.1 km North of Tedwyn Dr.)
Table F2/F2a	Equivalent Single Axle Load Calculations (0.2 km North of Queensway East)
Table F3/F3a	Equivalent Single Axle Load Calculations (0.5 km North of Silver Creek Blvd.)
Table F4/F4a	Equivalent Single Axle Load Calculations (0.2 km North of Bloor St.)
Table F5/F5a	Equivalent Single Axle Load Calculations (1.0 km North of Burnhamthorpe Rd.)
Table F6	AASHTO 1993 Flexible Pavement Design (New Construction - Sta. 0+960 to Sta. 12+750)
Table F7	AASHTO 1993 Flexible Pavement Design (New Construction - Sta. 12+750 to Sta. 14+220)
Table F8	AASHTO 1993 Flexible Pavement Design (New Construction - Sta. 14+220 to Sta. 15+460)
Table F9	AASHTO 1993 Flexible Pavement Design (Full Depth Asphalt Replacement - Sta. 12+750 to
	Sta. 14+220)
Table F10	AASHTO 1993 Flexible Pavement Design (Partial Mill and Overlay - Sta. 12+750 to Sta. 14+220)
Table F11	AASHTO 1993 Flexible Pavement Design (Full Depth Asphalt Replacement - Sta. 14+220 to
	Sta. 15+460)
Table F12	AASHTO 1993 Flexible Pavement Design (Partial Mill and Overlay - Sta. 14+220 to Sta. 15+460)

1.0 INTRODUCTION

Terraprobe Inc. (Terraprobe) has been retained by IBI Group (IBI) to provide geotechnical engineering services in support of a Schedule 'B' Class Environmental Assessment Study for Cawthra Road between South Service Road and Eastgate Parkway in the City of Mississauga, Regional Municipality of Peel, Ontario. A site location plan is provided as Figure 1 and site photographs are presented in Figures 2 to 7.

The scope of work for the geotechnical engineering services of this project is outlined in Terraprobe's proposal titled "Geotechnical Consulting Engineering Services, Cawthra Road Corridor and Intersection Improvements from QEW to Eastgate Parkway, City of Mississauga, Regional Municipality of Peel, Ontario" dated June 29, 2018.

The purpose of this study was to assess the pavement condition and to explore the subsurface conditions by borehole drilling, falling weight deflectometer (FWD) testing, pavement coring and, laboratory testing on soil samples. The data obtained from this investigation was used to provide Borehole Location Plans, Borehole Logs, Pavement Core Logs, laboratory test results, a description of the subsurface conditions and pavement design recommendations.

2.0 SITE AND PROJECT DESCRIPTION

Cawthra Road is a north-south oriented, two-lane urban roadway under the jurisdiction of the Regional Municipality of Peel (Region of Peel) that serves an arterial function. The road is approximately 5.5 km long within the project limits. The south limit of this project is approximately 20 m south of South Service Road/Cawthra Road intersection, i.e. Sta. 9+960, and the north project limit is Cawthra Road/Eastgate Parkway intersection, i.e. Sta. 15+460 with chainage increasing from south to north.

The MTO interchange at the Queen Elizabeth Way is located within the south project limit and the Highway 403 is located at the north project limit. Grade separation structures exist at Dundas Street and also 125 m south of Dundas Street where the railway crosses above Cawthra Road.

3.0 INVESTIGATION PROCEDURES

3.1 Current Investigation

The field investigations were carried out during the period June 3 to 14, 2019 after obtaining utility clearances and permits. The work was performed in accordance with the lane closure times specified by the Region of Peel and City of Mississauga. Details of the field investigations are presented below.

- Drilling forty-one pavement boreholes through the existing lanes and shoulders of Cawthra Road each to a depth of approximately 1.5 m below ground surface;
- Drilling two 1.8 m deep boreholes at the proposed turning lane locations;
- Drilling sixteen 1.5 m deep pavement boreholes through the existing lanes of intersecting roads;
- Coring the Cawthra Road pavement at eighteen locations; and
- Manually excavating fifty-one shallow test pits in boulevard areas to estimate the topsoil thickness.

The borehole locations were marked in the field by Terraprobe's staff in relation to existing features shown on the drawings provided by IBI. The approximate borehole locations are shown on Figures 8 to 14.

The boreholes were drilled with a CME 55 truck-mounted drill rig and also portable drilling equipment supplied and operated by a specialist drilling contractor who was observed on a full-time basis by members of Terraprobe's technical staff.

In the boreholes drilled through the existing pavements, samples of the soil and granular material were collected from auger cuttings. In the boreholes drilled at the proposed turning lane locations, samples of the overburden soils were obtained by advancing a split spoon sampler with portable hand operated vibratory equipment. The ground water conditions in the open boreholes were observed during and immediately following the drilling operation.

The recovered soil samples were transferred to Terraprobe's Brampton laboratory for further examination and testing. Select soil samples were subjected to a laboratory testing programme consisting of natural moisture content and grain size distribution in accordance with ASTM Standards as appropriate. Fifteen soil samples and three asphalt cores were also submitted to SGS Laboratories for chemical testing. Falling Weight Deflectometer (FWD) testing was also performed on Cawthra Road between the project limits by Engtec Consulting Inc.

The results of the soil testing program, are presented on the Pavement Borehole Logs in Appendix A1 and on the figures in Appendix B. The pavement core data and photographs are provided in Appendix A1 and the results of the chemical tests are provided in Appendix C. The FWD test results and the report are included in Appendix D.

A visual pavement condition survey of Cawthra Road was completed in August 2019 and the Pavement Condition Evaluation Forms are included in Appendix E.

3.2 **Previous Investigation**

This site between Burnhamthorpe Road and Meadows Boulevard was previously investigated by Coffey Geotechnics in 2011, and the approximate locations of applicable boreholes from this study are shown on Terraprobe's Figures 12 and 13. Coffey's Borehole Location Plan and borehole logs are provided in Appendix A2.

4.0 DESCRIPTION OF SUBSURFACE CONDITIONS

Reference is made to the Borehole Logs in Appendix A. An overall description of the stratigraphy is given in the following paragraphs.

4.1 Pavement Structure

The average pavement structures of Cawthra Road are summarized in the following table.

Road	Station	Average Thickness (mm)			
Road	Station	НМА	Concrete	Granular	Total
	Sta. 9+960 to Sta. 12+750	105	200	300	605
Courthro Dood	Sta. 12+750 to Sta. 14+280	175	-	405	580
Cawthra Road	Sta. 14+280 to Sta. 15+080	140	-	460	600
	Sta. 15+080 to Sta. 15+460	300	-	375	675

Six samples of the granular base/subbase material were subjected to grain size distribution tests and the results are presented in Figure B1 in Appendix B. The results are compared to the Ontario Provincial Standards (OPSS) gradation specifications for Granular A and Granular B Type II. The natural water content of samples of the granular base/subbase range from 2% to 10% by weight.

Bead	Location	Average Thickness (mm)			
Road	Location	НМА	Concrete	Granular	Total
Tedwyn Drive	East Bound Lane	150	-	250	400
Queensway East	East Leg, West Bound Lane West Leg, East Bound Turning Lane	90 220	130 -	260 490	480 710
Needham Lane	East Bound Lane	180	-	370	550
Silver Creek Boulevard	East Bound Lane	140	-	310	450
Santee Gate	East Bound Lane	130	-	270	400
Bloor Street	East Leg, East Bound Lane West Leg, West Bound Lane	200 230	-	500 270	700 500
Schomberg Avenue	West Bound Lane	200	-	300	500
Hyacinthe Boulevard	West Bound Lane	180	-	420	600
Breckenridge Road	East Leg, East Bound Lane West Leg, West Bound Lane	140 180	-	260 320	400 500
Runningbrook Drive	East Bound Lane	150	-	250	400
Hassall Road	East Bound Lane	140	-	310	450
Burnhamthorpe Road East	East Leg, East Bound Lane West Leg, West Bound Lane	250 240	-	450 410	700 650

The pavement structure of intersecting roads with Cawthra Road are summarized in the following table.

4.1.1 Pavement Condition

A visual pavement condition survey of Cawthra Road was completed in August 2019. The pavements were evaluated in accordance with the procedures outlined in the following manuals:

- Ministry of Transportation of Ontario (MTO) Manual for Condition Rating of Flexible Pavements -Distress Manifestations (SP-024); and
- Ministry of Transportation Ontario, Manual for Condition Rating of Rigid Pavements Concrete Surface and Composite Distress Manifestations (SP-026), September 1995

The Pavement Condition Evaluation Forms are included in Appendix E and, the observed pavement distresses and pavement condition of the evaluated pavement sections are summarized in the following table.

Section	Overall Condition	General Distresses
Cawthra Road Sta.9+960 to Sta. 10+830	PCR* = 95, RCR** = 9.5 Excellent	 Few very slight ravelling and coarse aggregate loss.
Cawthra Road Sta.10+830 to Sta.11+500	PCR* = 70, RCR** = 7.0 Good	 Frequent slight ravelling and coarse aggregate loss; Intermittent slight spalling; Intermittent moderate tenting/cupping; Intermittent moderate single and multiple longitudinal, meandering cracking; Intermittent moderate single transverse cracking; and Frequent moderate reflective transverse joints.
Cawthra Road Sta.11+500 to Sta. 12+750	 Few very slight ravelling and coarse aggregate loss; Few slight spalling; Few slight tenting/cupping; Few slight single and multiple longitudinal, meandering cracking; Few slight single transverse cracking; and Intermittent slight reflective transverse joints. 	
Cawthra Road Sta.12+750 to Sta.14+220	PCR* = 70, RCR** = 7.0 Good	 Throughout slight ravelling and coarse aggregate loss; Intermittent slight wheel track rutting; Intermittent slight distortion; Extensive slight single and multiple longitudinal wheel track cracking; Intermittent slight alligator longitudinal wheel track cracking; Throughout slight single and multiple centre line cracking; Few slight alligator centre line cracking; and Extensive slight half, full and multiple transverse cracking.
Cawthra Road Sta.14+220 to Sta.15+460 Excellent		 Few very slight single and multiple longitudinal wheel track

* PCR = Pavement Condition Rating. ** RCR = Ride Condition Rating

4.2 Subgrade Soils

The pavement subgrade soils generally consist of a silty sand to sand, silty clay to clayey silt and sand and gravel to gravelly sand. Weathered shale was encountered at some borehole locations (auger refusal) and is interpreted to exist between Sta. 11+900 and Sta. 12+475.

The results of particle size analysis conducted on four samples of the silty sand to sand subgrade soils are shown in Figure B2 in Appendix B. The test results show a grain size distribution consisting of 8% to 18% gravel, 39% to 63% sand, 19% to 33% silt, and 4% to 18% clay size particles. The moisture content of samples of the silty sand to sand subgrade soils range from 7% to 13% by weight.

The results of particle size analysis conducted on two samples of the silty clay to clayey silt subgrade soils are shown in Figure B3 in Appendix B. The test results show a grain size distribution consisting of 1% and 2% gravel, 25% and 28% sand, 42% and 45% silt, and 28% and 29% clay size particles. The moisture content of two samples of the silty clay to clayey silt subgrade soils are 18% and 19% by weight.

The result of particle size analysis conducted on a sample of the sand and gravel to gravelly sand subgrade soil is shown in Figure B4 in Appendix B. The test result shows a grain size distribution consisting of 29%

gravel, 48% sand, 18% silt, and 5% clay size particles. The moisture content of a sample of the sand and gravel to gravelly sand subgrade soil is 5% by weight. Based on the particle size analysis:

- the silty sand to sand subgrade soils have a low frost susceptibility (LSFH) and their erodibility (K factor) ranges from 0.14 to 0.2;
- the silty clay to clayey silt subgrade soils have a low frost susceptibility (LSFH) and the erodibility (K factor) of the two tested samples are 0.33 and 0.37; and
- the sand and gravel to gravelly sand subgrade soil has a low frost susceptibility (LSFH) and the erodibility (K factor) of the tested sample is 0.05.

4.3 Topsoil

Topsoil layers ranging in thickness from 100 mm to 180 mm were encountered in the shallow test pits. Further details are provided in the Topsoil Thickness Sheets in Appendix A1. Topsoil thickness will vary between and beyond the test pit locations.

4.4 Ground Water

No free ground water was encountered in the boreholes. However, the ground water level can be expected to fluctuate seasonally and after severe weather events.

5.0 DISCUSSION AND RECOMMENDATIONS

5.1 General

This section of the report presents an interpretation of the factual geotechnical data and provides pavement design recommendations. The discussions and recommendations are based on our understanding of the project, and our interpretation of the factual data obtained from the subsurface investigations.

Where comments are made on construction, they are provided to highlight those aspects that could affect the design of the project, and for which special provisions or operational constraints may be required in the Contract Documents. Those requiring information on the aspects of construction should make their own interpretation and assessment of the geotechnical information provided, as such interpretation may affect equipment selection, proposed construction methods, scheduling, and the like.

The pavement design recommendations provided herein are related to the following aspects of this project:

- Rehabilitating the Cawthra Road pavement between the project limits, Sta. 9+960± to Sta. 15+460±;
- Providing exclusive turning lanes at the Cawthra Road intersections with Eastgate Parkway, Rathburn Road, Bloor Street, Queensway East, North Service Road and South Service Road;
- Providing bus bays and bicycle tracks within the project limits; and
- An easterly shift of the Cawthra Road alignment from approximately 200 m north of Silver Creek Blvd. to Santee Gate, i.e. between Sta. 12+740 and Sta. 12+900.

5.2 Traffic Data

The 24-hour traffic count data and annual growth rate used for the pavement designs were provided by IBI and are based on Year 2017/2018 traffic data obtained from the Region of Peel. The ESAL values were derived using Average Annual Daily Truck Traffic (AADTT) obtained from the 24-hour traffic count data and also AADT data. The ESAL calculations for both analytical methodologies are provided in Tables F1/F1a to F5/F5a in Appendix F and these ESAL values are summarized in the following tables.

Troffic Volume and Devement	Location			
Traffic Volume and Pavement Design Parameters	0.1 km North of Tedwyn Dr.	0.2 km North of Queensway East	0.5 km North of Silver Creek Blvd.	
AADTT (2015)	4,212	2,666	3,409	
Projected base year AADTT (2019)	4,354	2,756	3,524	
Projected AADTT (2034)	4,928	3,119	3,989	
Annual Growth Rate (2019 to 2034)	0.83%	0.83%	0.83%	
Percent Commercial Vehicles	100%	100%	100%	
Directional Split	50%	50%	50%	
Cumulative Design ESALs (AADTT)	7,761,000	7,771,200	10,401,600	
Cumulative Design ESALs (AADT)	6,768,000	7,968,000	8,467,200	

Traffic Volume and Pavement	Location		
Design Parameters	0.2 km North of Bloor St.	1.0 km North of Burnhamthorpe Rd.	
AADT (2015)	3,020	2,261	
Projected base year AADT (2019)	3,122	2,337	
Projected AADT (2039)	3,534	2,645	
Annual Growth Rate (2019 to 2039)	0.83%	0.83%	
Percent Commercial Vehicles	100%	100%	
Directional Split	50%	50%	
Cumulative Design ESALs (AADTT)	8,361,600	7,387,200	
Cumulative Design ESALs (AADT)	7,838,400	7,017,600	

5.3 Pavement Designs

The pavements were designed based on the traffic information provided by IBI and the data obtained from the field investigations. The following references and guidelines were used for the pavement designs.

- MTO's "Adaptation and Verification of AASHTO Pavement Design Guide for Ontario Conditions, MI-183", March 19, 2008;
- American Association of State Highway and Transportation Officials, "AASHTO Guide for Design of Pavement Structures", 1993;
- "Procedures for Estimating Traffic Loads for Pavement Designs," Hajek. J., 1995; and
- Canadian Portland Cement Association "Thickness Design for Concrete Highway and Street Pavements", 1984.

The pavement design parameters are summarized in the following table.

Design Para	ameter	Values		
Design Perio	od (years)	15		
Estimated Cumulative Design ESAL's		Sta. 0+960 to Sta. 12+750 Sta. 12+750 to Sta. 14+220 Sta. 14+220 to Sta. 15+460	7,968,000 10,401,600 7,387,200	
Initial/Termin	nal Serviceability Index	$P_i = 4.5$	$P_t = 2.0$	
Loss in Serv	iceability Index	2.5		
Desired Reliability (R %) and Standard Deviation (SD)			: 0.44 (Flexible) : 0.34 (Rigid)	
	Estimated Resilient Modulus of Subgrade Soil (MPa)	Sta. 0+960 to Sta. 12+750 Sta. 12+750 to Sta. 14+220 Sta. 14+220 to Sta. 15+460	35 to 50 35 to 38 30 to 40	
Flexible Pavement Design	Layer Coefficients of Hot Mix Asphalt (HMA)	New HMA = 0.42 Existing HMA = 0.28		
Design	Layer Coefficient of Granular Materials	New Gran A = 0.14 New Gran B Type II = Existing Granular = 0.09 to 0.12		
	Drainage Coefficient of Granular Materials	m = 1 (new & existing granular base & subbase)		
Rigid	Modulus of Subgrade Reaction (k) (kPa/mm)	90		
Pavement	Mean PCC Modulus of Rupture (MPa)	4.7		
Design	Elastic Modulus of Concrete (MPa)	23,000		

5.3.1 **Pavement Structure (New Construction - Widening)**

Based on the estimated cumulative ESAL's and Region of Peel's Standard Drawing 5-1-1, the recommended pavement structure for new construction i.e. road widening and turning lanes, is provided in the following table.

Pavement Component/Parameter	Component Thickness/Parameter Value (mm)
DFC (Surface Course)	50
HDBC (Binder Course)	100*
Granular A Base Course	150
Granular B Type II Subbase Course	450
Total Thickness	750
Structural Number Provided	138
Design Structural Number	128 to 132
* 2x50 mm thick lifts	

2x50 mm thick lifts

In the pavement widening areas we recommend the following construction methodology:

- Saw cut the pavement and remove the existing asphalt concrete;
- If and as required sub-excavate the existing granular material and subgrade soils to achieve the pavement design top of subgrade elevation;
- Place and compact the granular base and sub-base courses; and
- Apply tack coat to the existing pavement and pave the lower and upper binder courses followed with the surface course paving. Stagger HMA lifts 150 mm into the existing pavement to prevent reflective cracking at the construction joint.

5.3.2 Pavement Structure (Rehabilitation)

The structural capacities of the existing pavements were analyzed using AASHTO's pavement overlay design procedure. Designs were carried out for a service life extension of 15 years and both the rigid pavement and flexible pavements were found to be structurally deficient. The structural number deficiencies are tabulated below.

Section	Design ESALs	Required Design Structural Number (mm)	Existing Structural Number (mm)
Sta. 0+960 to Sta. 12+750	7,968,000	165	164
Sta. 12+750 to Sta. 14+220	10,401,600	121	90
Sta. 14+220 to Sta. 15+460	7,387,200	114	85

Various rehabilitation techniques were considered noting that raising the grade is not considered to be beneficial to the overall design. Therefore, the only feasible and practical rehabilitation strategies are:

- For the rigid pavement mill/remove the existing asphalt overlay (105 mm) and repave with 105 mm of new HMA;
- For the flexible pavements carry out full depth reconstruction or consider other rehabilitation techniques such as mill and overlay and/or full depth replacement. Full depth reconstruction is the only rehabilitation alternative that will provide a 15-year design life for the design traffic. The mill and overlay and full depth rehabilitation techniques will improve road performance but the service life extension for the design traffic will be less than 15 years. Tabulated below are the three rehabilitation alternatives for the flexible pavement and the calculated service life extensions.

		Service Life Extension (Ye	ear)
Section	Full Depth Reconstruction	Full Depth Asphalt Replacement	Mill 100 mm and Overlay 100 mm
Sta. 12+750 to Sta. 14+220	15	10	5
Sta. 14+220 to Sta. 15+460	15	10	5

Since full depth reconstruction of the flexible pavement is a large expenditure, the preferred rehabilitation strategy i.e. mill 100 mm and overlay 100 mm (50 mm DFC surface course and 55 mm HDBC binder course) was considered after further consultations with the design team and client. Although the designs suggest that a service life extension of 5 years can be achieved with the 100 mm mill and overlay option, based on the Region's observations of the existing pavement performance (the existing pavement is over 10 years old and still performing acceptably) it is understood that this rehabilitation option could provide a service life extension of up to 10 years to reach its terminal serviceability limit. Preplacing the entire pavement envelope now will be very disruptive and will, in all likelihood still end in the pavement reaching its terminal serviceability over the next 10+ years.

The rigid pavement should be rehabilitated by full depth removal of the existing asphalt and repaving with 105 mm of asphalt consisting of 50 mm DFC surface course and 55 mm of HDBC binder course. This asphalt overlay will increase the structural number of the rigid pavement from 188 mm to 230 mm. Cracks in the concrete shall be routed and sealed in accordance with OPSD 508.020 prior to paving the HMA overlay.

Full depth composite (concrete) pavement repairs will be required where joint failures exist in the underlying concrete. Repairs shall be carried out in accordance with the Region of Peel Standard Drawing 5-2-2. Full depth repairs shall include:

- delineation (by sawing) and removal of the affected slab section(s) so as not to disturb or damage any adjacent slabs;
- appropriate disposal of the old concrete and steel reinforcement;
- treatment of any exposed steel and/or reinforcement against further corrosion;
- sub-excavation of undesirable and/or deleterious materials from the base'
- base preparation, Granular A base restoration;
- proper matching of transverse joints and proper separation along longitudinal joints to prevent crack propagation;
- installation of tie bars and dowels at 900 mm spacing and an insertion depth of 300 mm at mid depth the concrete slab;
- placing and curing of the Portland Cement Concrete; and
- joint resealing.

It should be noted that there are inherent risks associated with the rigid pavement rehabilitation most notably is the concrete pavement condition which can only be assessed after the asphalt is removed. If the concrete slabs are in poor condition, then large areas of concrete may require full depth concrete repairs which will result in increased construction costs.

5.4 Construction Features

5.4.1 Material Types

The following mix types as specified in the Region of Peel specifications and OPSS 1150 are considered suitable for this project.

- DFC Surface Course; and
- HDBC Binder Course.

Granular A material should be used for the base material and Granular B Type II is recommended as subbase material. The Granular A and the Granular B Type II material shall meet the OPSS.MUNI 1010 specifications and shall consist of crusher run limestone as specified in Region of Peel's Standard Drawing 5-1-1.

5.4.1 Padding

HL3 HS is recommended as padding where grade adjustments require HMA thicknesses that are less than 50 mm. Padding shall be placed in lifts not exceeding 50 mm thick.

5.4.2 Asphalt Cement Grade

Performance graded asphalt cement PG 70-28 conforming to the Region of Peel specifications and OPSS MUNI 1101 is recommended for the surface course and upper binder courses. Performance graded asphalt cement PG 58-28 is recommended for all other mixes.

Asphalt cement used in the manufacture of hot mix asphalt surface and binder courses should not contain Vacuum Tower Asphalt Extenders (VTAE), Refined Engine Oil Bottoms (REOB) or Waste Engine Oil Residue (WEOR). Therefore, we recommend testing the Asphalt Cement properties and attributes in accordance with the test requirements outlined in OPSS Special Provision No, 111F09.

5.4.3 Tack Coat

A tack coat (SS1) should be applied to all construction joints prior to placing hot mix asphalt to create an adhesive bond. Prior to placing hot mix asphalt, SS1 tack coat must also be applied to all existing surfaces and between all new lifts.

5.4.4 Bus Bays

The road will carry transit buses and a rigid pavement is recommended for the bus bays. The bus bay pavement should be constructed in accordance with The Region of Peel Standard Drawing 5-2-10 *"Concrete Pavement for Acceleride Bus Bay"*.

5.4.5 Paved Shoulders

Paved shoulders are likely required in some areas. In these areas the paved shoulders shall be constructed by extending the top two lifts of hot mix asphalt on the main lanes over the granular shoulder material i.e. the 50 mm DFC surface course and the 50 mm HDBC upper binder course.

5.4.6 Subgrade Preparation

All topsoil, organics, soft/loose and otherwise disturbed soils shall be removed from the subgrade areas. The design subgrade is expected to consist of fine-grained soils or granular soils such as silty sand. The fine-grained soils (such as silty clays and clayey silts) will be weakened by construction traffic when wet, especially if site work is carried out during periods of wet weather. During these weather conditions, an adequate granular working surface would be required in order to minimize subgrade disturbance. Subgrade preparation and fill construction should not be done in the winter.

Immediately prior to placing the granular base course, the subgrade soils should be compacted and then proofrolled with a heavy rubber tired vehicle (such as a loaded gravel truck). The subgrade should be inspected for signs of rutting or displacement. Areas displaying signs of rutting or displacement should be recompacted and retested or, the material should be excavated and replaced with well-compacted and clean fill.

The fill may consist of either granular material or local inorganic soils provided that their moisture contents are within $\pm 2\%$ of optimum. Fill material shall be placed and compacted in accordance with OPSS MUNI 501 and the upper 300 mm thick layer of the subgrade soils shall be compacted to 98% of the material's Standard Proctor Maximum Dry Density (SPMDD).

5.4.7 Fill Materials

Only approved earth fill that complies with the OPSS.MUNI 212 specification for borrow material shall be used for construction. The placement of borrow material must be carefully monitored and properly compacted in accordance with OPSS.MUNI 501 to ensure adequate pavement support. Mixing of fill materials from different sources is not recommended due to the risks associated with differential settlement, drainage problems and frost heave.

Soils of low to medium frost susceptibility can be used as fill up to the proposed pavement design subgrade elevation. Soils with high frost susceptibility are not recommended for re-use within a zone extending to a maximum depth of 1.2 m below the proposed pavement design subgrade. These soils should be segregated and used elsewhere.

At the time of construction, the moisture content of the fill material shall be within $\pm 2\%$ of its Optimum Moisture Content (OMC). Reconditioning of the fill material to achieve optimum moisture content may be required prior to placement.

5.4.8 Drainage

Urban sections will require subdrains placed beneath the curb in accordance with the Region of Peel Standards 5-2-15A and 5-2-15B. Rural sections shall be constructed in accordance with OPSD 200.020. To provide positive surface water run-off as well as drainage across the pavement platform, the pavement surface should be sloped (normally 2%) and the pavement subgrade should be sloped at 3% towards the sides.

5.4.9 Pipe Culverts

Minor pipe culverts shall be installed in accordance with OPSD 802.010. Granular A material is recommended for embedment/bedding and cover to these pipes. Clean native soils can also be used as cover provided that these soils are placed below the design frost depth. Granular frost tapers will be required when the frost line is below the top of culvert.

5.4.10 Compaction of Base & Sub-Base Material

Asphalt concrete shall be placed and compacted in accordance with the Region of Peel Standards and OPSS 310. Granular base and subbase materials shall be placed in 150 mm lifts and compacted to 100% of the material's Standard Proctor Maximum Dry Density (SPMDD) at $\pm 2\%$ of its Optimum Moisture Content (OMC) in accordance with OPSS.MUNI 501.

5.4.11 Pavement Removals

Refer to the tabulated average pavement component thicknesses in Section 4.1 for the appropriate asphalt and granular thickness to use for estimating purposes.

5.4.12 Reuse of Existing Granular Material

The grain size analyses of three selected samples of the pavement base and subbase material indicates that the sampled material does not meet the OPSS.MUNI 1010 gradation requirements for Granular A and Granular B Type II material.

Therefore, granular material salvaged from under the existing pavement and shoulders is not recommended for re-use to construct the pavement base and subbase. This granular material can be used as non-structural fill elsewhere, provided that it is free of topsoil and other deleterious material.

5.4.13 Stripping

Assume an average topsoil thickness of 150 mm. Full depth removal of the topsoil and any other deleterious material is required prior to constructing the pavements in the widening areas.

5.4.14 Frost Penetration and Frost Susceptibility

For design purposes assume a frost penetration depth of 1.2 m. Based on MTO's *Pavement Design and Rehabilitation Manual, SDO 90-01,* the subgrade soils have a low susceptibility to frost heave (LSFH).

5.4.15 Soil Erodibility

Refer to the pavement borehole logs for the derived "K" factors. The soil erodibility of the subgrade soils is generally low to medium based on "K" factors of 0.05 to 0.37.

5.4.16 Excavations

All excavations shall be carried out in accordance with the guidelines outlined in the "Occupational Health and Safety Act (OHSA) and Regulations for Construction Projects". Where workers must enter excavations extending deeper than 1.2 m, the trench walls must be suitably sloped and/or braced in accordance with the OHSA. Within the envisaged depths of temporary excavations, the OHSA soil classifications for this site are:

- Fill Soils Type 3 soils;
- Silty Sand to Sand / Silty Clay to Clayey Silt / Sand and Gravel to Gravelly Sand Type 3 soils.

The side slopes of temporary excavations may be formed no steeper than 1H:1V for Type 3 soils. Excavations should be undertaken in accordance with OPSS 902.

5.5 Soil Chemical Analysis

The testing carried out is intended to provide an overview of the soil quality and may not be adequate for the design of a soil management plan for construction because the actual quality of the excavated soils could vary between and beyond the boreholes. The actual acceptance criteria for surplus soil will vary with the receiving site and therefore additional sampling/testing will likely be required during construction to confirm disposal or re-use options. Debris or stained/odorous soils, that are encountered during excavation, should be segregated, and re-evaluated for disposal or re-use as fill and may require additional chemical analysis. If the excavated material is to be disposed of off-site, it is the contractor's responsibility to make arrangements and to identify a soil receiver that will accept excess soils.

Select soil samples from were submitted for analysis to investigate the high-risk APEC identified in Contamination Overview Study. A summary of the samples submitted for analysis is summarized below:

		Sample ID /	Soil			Che	mical Ana	lysis
Borehole ID	Station/Location	Depth (m)	Description	PCAs	APEC	M&I	РНС	voc
Borehole 1	10+030	AS 1 0.3 – 0.6	Granular Trace to some Silt	O1, 2, 3, 7, 8, 15 & 30	15	~		
Borehole 7	10+700	AS 1 0.3 – 0.7	Granular Trace to some Silt	O1, 2, 3, 7, 8, 15 & 30	15	~		
Borehole 15	11+340	AS 1 0.3 – 0.6	Granular Trace to some Silt	O1, 10, 28 & 30	4, 15	~	~	~
Borehole 18	11+600	AS 1 0.3 – 0.6	Granular Trace to some Silt	O1, 10, 11, 28 & 30	6, 15	~	~	~
Borehole 24	12+480	AS 1 0.3 – 0.6	Granular Trace to some Silt	O1, 28 & 30	10, 15	~	~	~
Borehole 33	13+140	AS 1 0.2 – 0.5	Granular Trace Silt	O1 & 30	11, 15	~		
Borehole 38	13+900	AS 1 0.2 – 0.5	Granular Trace to some Silt	1, 2, 3, 7, 8, 15 & 30	15	~		
Borehole 40	14+220	AS 1 0.2 – 0.7	Granular Trace Silt	28 & 30	12, 15		~	~
Borehole 46	15+400	AS 1 0.0 – 0.8	Granular some Silt	1, 2, 3, 7, 8, 15 & 30	15	~		
Borehole 53	Bloor Street, East Leg	AS 1 0.2 – 0.7	Granular Trace to some Silt	30	15	~		
Borehole 62	Burnhamthorpe Rd. E. West Leg	AS 2 0.7 – 1.2	Gravelly Sand Trace to Some Silt	O1, 10, 28 & 30	12, 15		~	~

5.6 Applicable Standards

The results of the chemical analysis were compared to the Ministry of Environment, Conversation and Parks (MECP) Standards as found in the *"Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act"*, April 15, 2011. The Standards which the results were compared to, for coarse textured soils are:

- Table 1 Full Depth Background Site Condition Standards (Table 1);
- Table 2 Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for Residential, Parkland and Intuitional Land Use (Table 2 RPI);
- Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for Residential, Parkland and Intuitional Land Use (Table 3 RPI); and
- Table 3 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for Industrial, Commercial and Community Land Use (Table 3 ICC).

The Standards were chosen for the following reasons:

Table 1 – The results were compared to the Table 1 Standards in order to determine if the soil material was suitable for acceptance as clean fill meeting Table 1 at a potential receiving site;

- Table 2 RPI The results were compared to the Table 2 RPI Standards in order to determine if the soil was suitable for acceptance as material meeting Table 2 at a potential receiving site;
- Table 3 RPI– The results were compared to the Table 3 RPI Standards in order to determine if the soil should be considered a waste; and
- Table 3 ICC The results were compared to the Table 3 ICC as those are the applicable Site Condition Standards (SCS) for the site and to determine if the soil material should be considered a waste.

Table 3 ICC are the applicable SCS for the following reasons:

- The study area is in Commercial Land Use;
- Bedrock is presumed to be located at a depth greater than 2 m below ground surface;
- The site is located in an area that obtains its potable water from surface sources;
- The site is not located within 30 m of a surface water body; and
- The site is not located adjacent to an area of natural significance.

5.7 Sample Results

The results of the chemical analysis indicated the following:

Sample ID	Station/ Location	Table 1 RPI/ICC	Table 2 RPI	Table 3 RPI	Table 3 ICC
BH1 AS 1	10+030	Meets	Meets	Meets	Meets
BH 7 AS 1	10+700	Exceeds • EC (ORP) • SAR (ORP)	Exceeds • EC (ORP) • SAR (ORP)	Exceeds • EC (ORP) • SAR (ORP)	Meets
BH 15 AS 1	11+340	Exceeds Trichloroethylene (VOC) EC (ORP) SAR (ORP)	Exceeds Trichloroethylene (VOC) EC (ORP) SAR (ORP)	Exceeds Trichloroethylene (VOC) EC (ORP) SAR (ORP)	Exceeds • EC (ORP) • SAR (ORP)
BH 18 AS 1	11+600	Exceeds Hexane(n) (VOC) Trichloroethylene (VOC) EC (ORP) SAR (ORP)	Exceeds • Trichloroethylene (VOC) • EC (ORP) • SAR (ORP)	Exceeds Trichloroethylene (VOC) EC (ORP) SAR (ORP)	Exceeds • SAR (ORP)
BH 24 AS 1	12+480	Exceeds Trichloroethylene (VOC) EC (ORP) SAR (ORP)	Exceeds Trichloroethylene (VOC) EC (ORP) SAR (ORP)	Exceeds Trichloroethylene (VOC) EC (ORP) SAR (ORP)	Exceeds - SAR (ORP)
BH 33 AS 1	13+140	Exceeds • EC (ORP) • SAR (ORP)	Exceeds • EC (ORP) • SAR (ORP)	Exceeds • EC (ORP) • SAR (ORP)	Exceeds - EC (ORP) - SAR (ORP)
BH 38 AS 1	13+900	Exceeds • EC (ORP) • SAR (ORP)	Exceeds EC (ORP) SAR (ORP)	Exceeds • EC (ORP) • SAR (ORP)	Exceeds - SAR (ORP)
BH 40 AS 1	14+220	Exceeds Trichloroethylene (VOC) F4 (PHC) Gravimetric Heavy Hydrocarbons (PHC)	Exceeds • Trichloroethylene (VOC)	Exceeds Trichloroethylene (VOC)	Meets

Sample ID	Station/ Location	Table 1 RPI/ICC	Table 2 RPI	Table 3 RPI	Table 3 ICC
BH 46 AS 1	15+400	Exceeds • EC (ORP) • SAR (ORP)	Exceeds EC (ORP) SAR (ORP)	Exceeds EC (ORP) SAR (ORP)	Meets
BH 53 AS 1	Bloor Street, East Leg	Exceeds EC (ORP) SAR (ORP)	Exceeds • EC (ORP)	Exceeds EC (ORP)	Meets
BH 62 AS 2	Burnhamthorpe Rd. E. West Leg	Exceeds Trichloroethylene (VOC)	Exceeds Trichloroethylene (VOC)	Exceeds Trichloroethylene (VOC)	Meets

5.8 Asbestos

Three asphalt cores were tested for the presence of asbestos. Asbestos was not detected in any of the core samples.

6.0 LIMITATIONS AND RISK

6.1 Procedures

This investigation has been carried out using investigation techniques and engineering analysis methods consistent with those ordinarily exercised by Terraprobe and other engineering practitioners, working under similar conditions and subject to the time, financial and physical constraints applicable to this project. The discussions and recommendations that have been presented are based on the factual data obtained.

It must be recognized that there are special risks whenever engineering or related disciplines are applied to identify subsurface conditions. Even a comprehensive sampling and testing programme implemented in accordance with the most stringent level of care may fail to detect certain conditions. Terraprobe has assumed for the purposes of providing design parameters and advice, that the conditions that exist between sampling points are similar to those found at the sample locations. The conditions that Terraprobe has interpreted to exist between sampling points can differ from those that actually exist.

It may not be possible to drill a sufficient number of boreholes or sample and report them in a way that would provide all the subsurface information that could affect construction costs, techniques, equipment, and scheduling.

6.2 Changes in Site and Scope

It must also be recognized that the passage of time, natural occurrences, and direct or indirect human intervention at or near the site have the potential to alter subsurface conditions. Ground water levels are particularly susceptible to seasonal fluctuations.

The discussion and recommendations are based on the factual data obtained from investigations made by Terraprobe and are intended for use by the owner and its retained designers in the design phase of the project. If there are changes to the project scope and development features the interpretations made of the subsurface information, the geotechnical design parameters and comments relating to constructability issues and quality control may not be relevant or complete for the revised project. Terraprobe should be retained to review the implications of such changes with respect to the contents of this report.

This report was prepared for the express use of the Region of Peel, IBI Group and its retained design consultants. This report is copyright of Terraprobe Inc. and no part of this report may be reproduced by any means, in any form, without the prior written permission of Terraprobe Inc. The Region of Peel, IBI Group and their retained design consultants are authorized users.

Terraprobe Inc. R.A. ABDUL PROFESSIONA S. DAMAYAHOINEIAD MONFARED 100523519 Sepiole D_Monfared. March 19,202 March 19,2020 BOUNCE OF ONTAR Rel. BOWINCE OF ONTARIC

Sepideh D. Monfared, P.Eng. Geotechnical Engineer

R. Abdul, P.Eng. Principal, Senior Geotechnical Engineer

REFERENCES

American Association of State Highway Officials, AASHTO Guide for Design of Pavement Structures, 1993.

Canadian Portland Cement Association "*Thickness Design for Concrete Highway and Street Pavements*", 1984.

Ministry of the Environment, April 15, 2011. Soil, Ground Water and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act, PIBS # 7382e01.

Ministry of Transportation Ontario, Adaption and Verification of AASHTO Pavement Design Guide for Ontario Conditions (MI-183), 2008.

Ministry of Transportation Ontario. Pavement Design and Rehabilitation Manual (SDO 90-01), 1990.

Ministry of Transportation Ontario, Manual for Condition Rating of Flexible Pavements - Distress Manifestations (SP-024), August 1989.

Ministry of Transportation Ontario, Manual for Condition Rating of Rigid Pavements - Concrete Surface and Composite Distress Manifestations (SP-026), September 1995

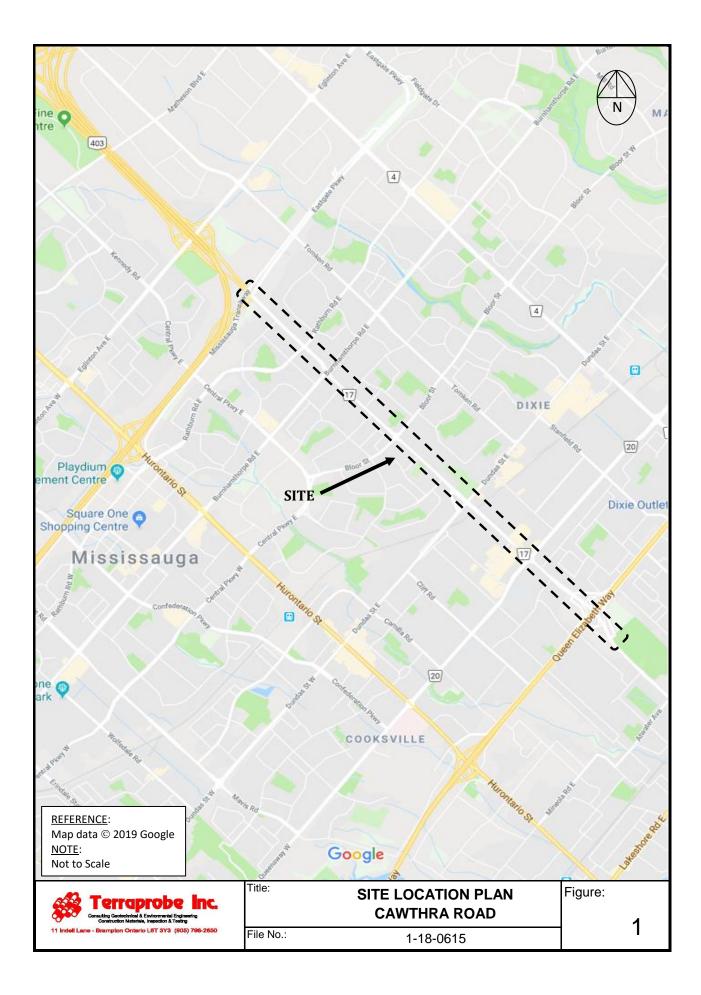
Ontario Regulation 213/91, Occupational Health and Safety Act (OHSA) and Regulations for Construction *Projects*, April 11, 2012.

Ontario Provincial Standard Specifications (OPSS)

Construction Specification for Hot Mix Asphalt.
Construction Specification for Excavating and Backfilling Structures.
Material Specification for Hot Mix Asphalt.
Construction Specification for Borrow.
Construction Specification for Compacting.
Material Specification for Aggregates Base, Subbase, Select Subgrade and
Backfill Material.
Material Specification for Performance Graded Asphalt Cement.

Ontario Provincial Standard Drawings (OPSD)

OPSD 100.060	Abbreviations, Geotechnical.
OPSD 200.020	Earth/Shale Grading, Divided Rural.
OPSD 508.020	Sealing or Resealing of Joints and Cracks in Concrete Pavement and Concrete
	Base.
OPSD 802.010	Flexible Pipe, Embedment and Backfill, Earth Excavation.


Region of Peel Standard Drawings

STD.DWG 5-2-2	Region of Peel Full Depth Composite (Concrete) Pavement Repair
STD.DWG 5-2-10	Region of Peel Concrete Pavement For Acceleride Bus Bay.
STD.DWG 5-2-15A	Region of Peel French Drain Trench Detail.
STD.DWG 5-2-15B	Region of Peel French Drain Trench with Subdrain Trench Details.

FIGURES

SITE PHOTOGRAPHS

FIGURE 4

Photo 5: Cawthra Road at Sta. 12+100, Looking North

Photo 6: Cawthra Road at Sta. 12+100, Looking South

Project No. : 1-18-0615 Date : November, 2018

Prepared by : SD

Checked by : RA

SITE PHOTOGRAPHS

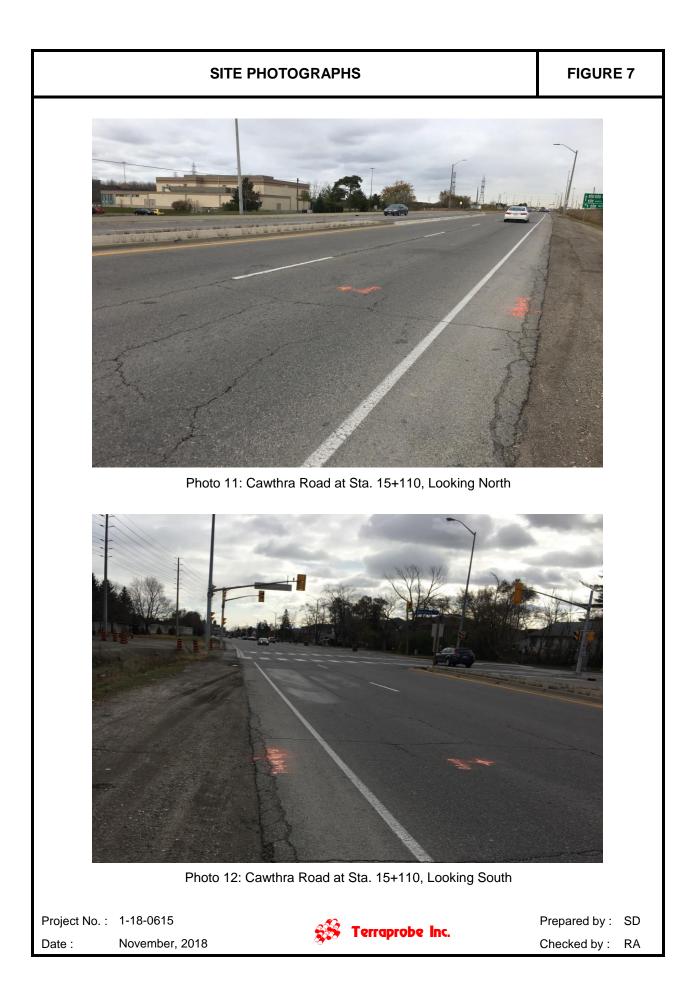
FIGURE 5

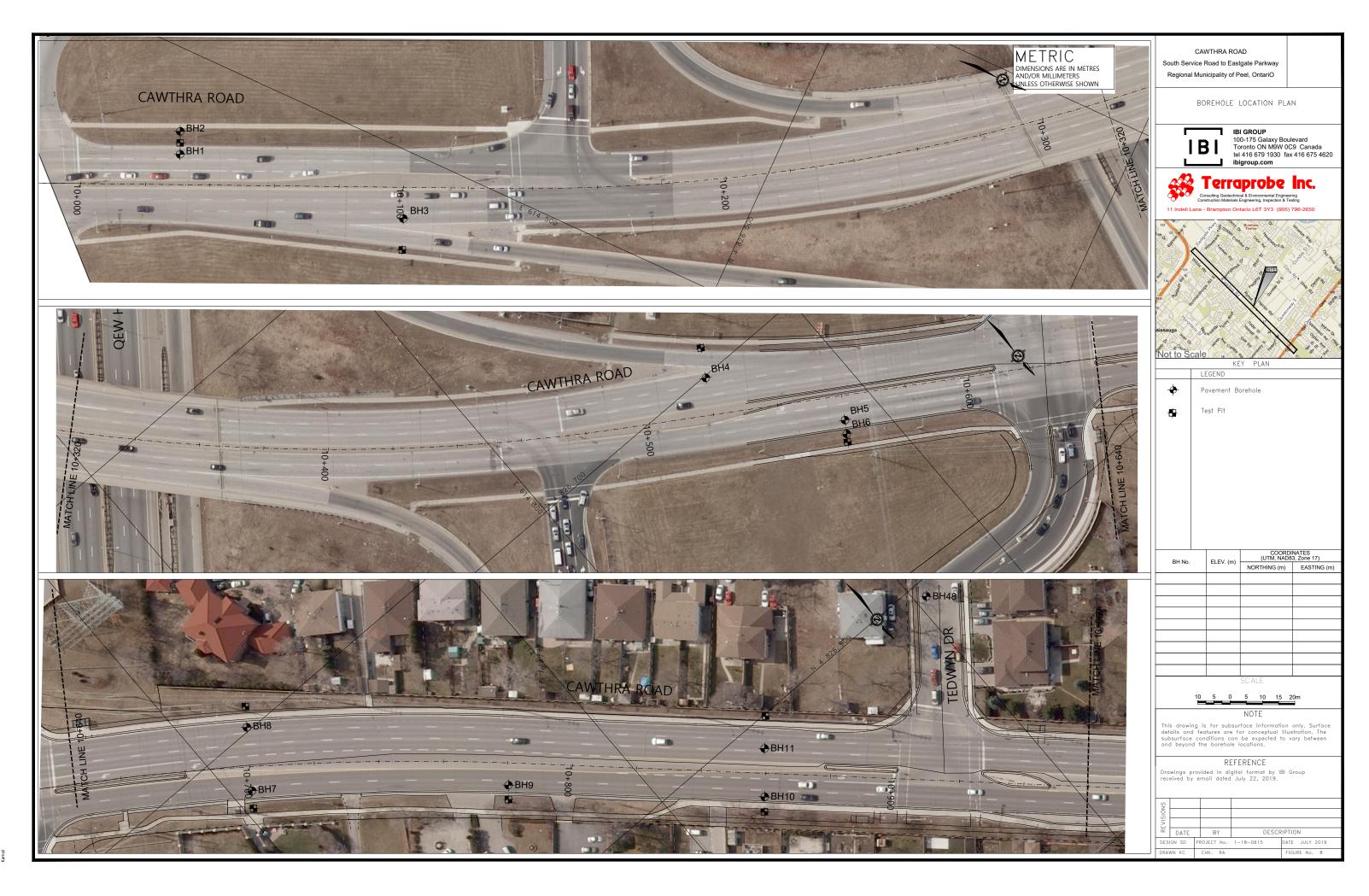
Photo 7: Cawthra Road at Sta. 12+900, Looking North

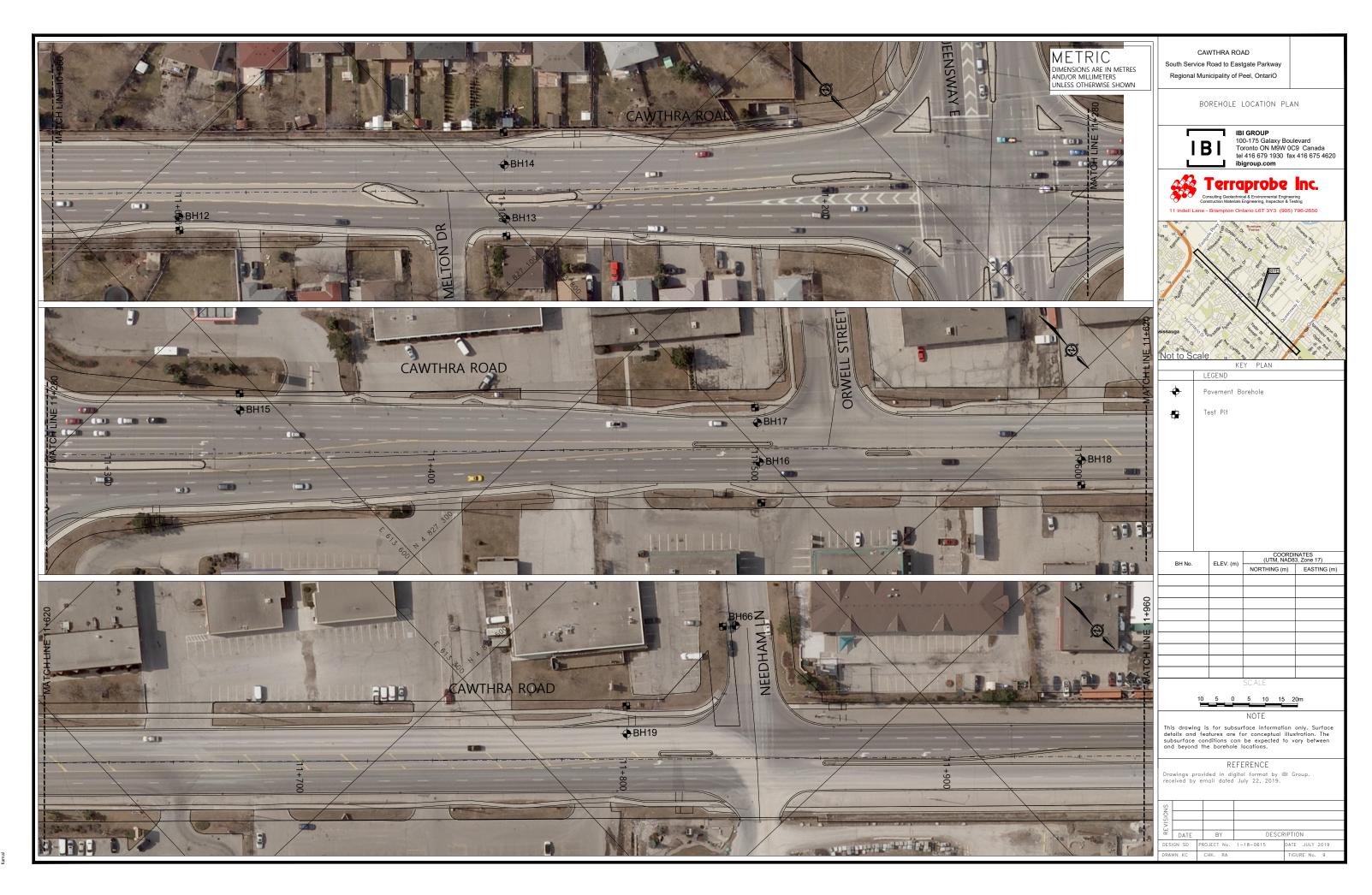
Project No. : 1-18-0615 Date : November, 2018

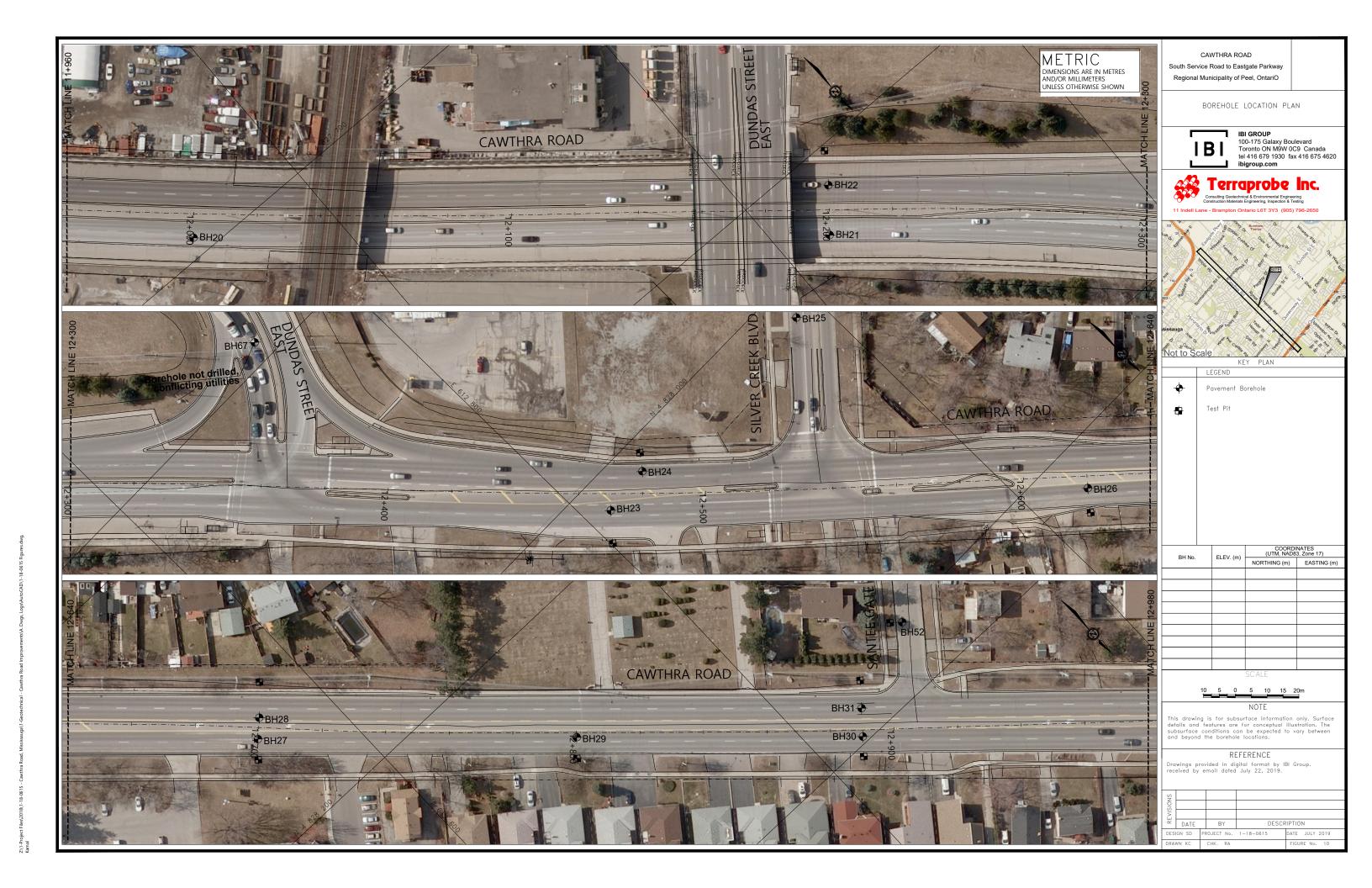
SITE PHOTOGRAPHS

Photo 9: Cawthra Road at Sta. 14+100, Looking North

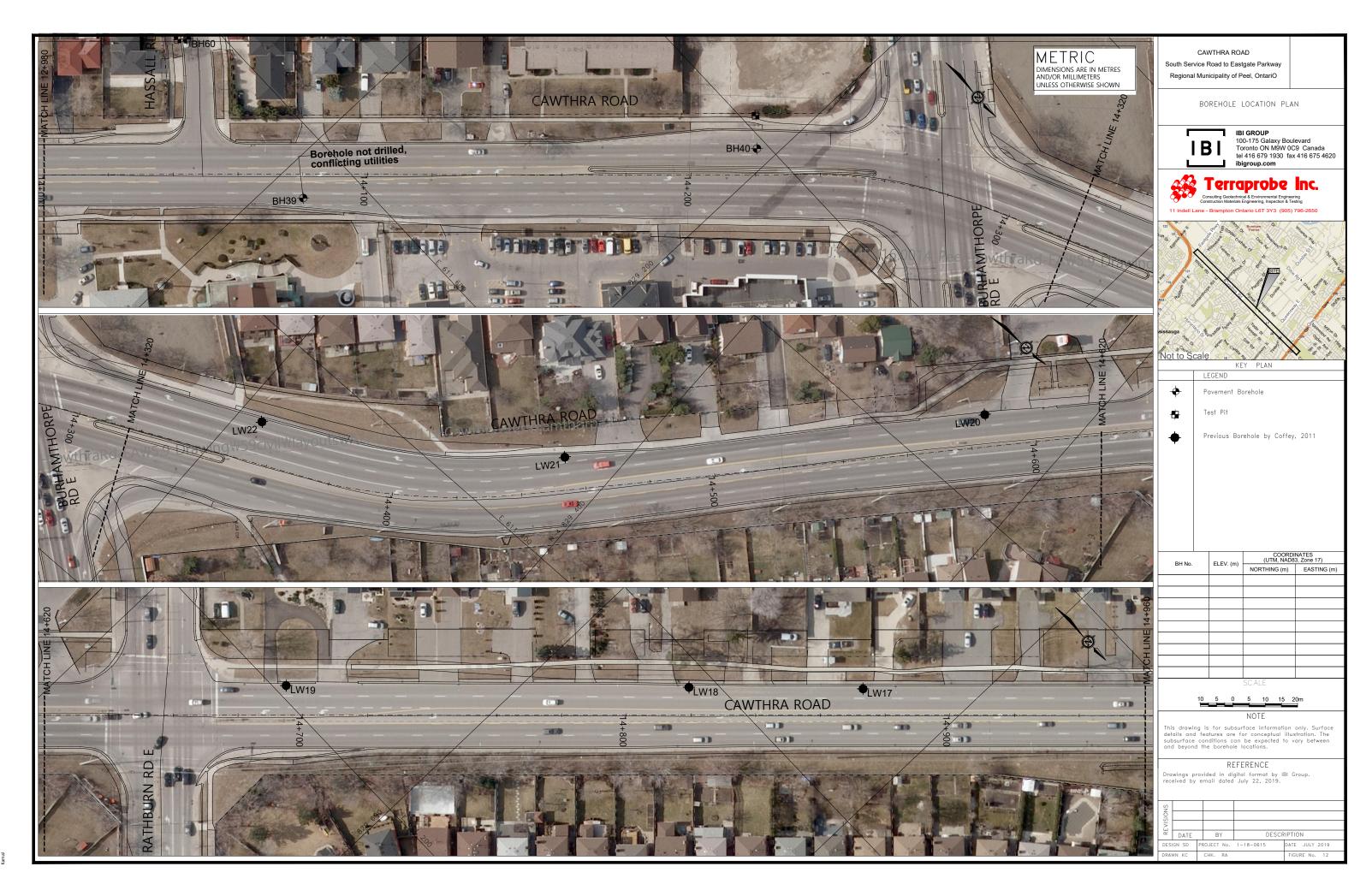

Photo 10: Cawthra Road at Sta. 14+100, Looking South

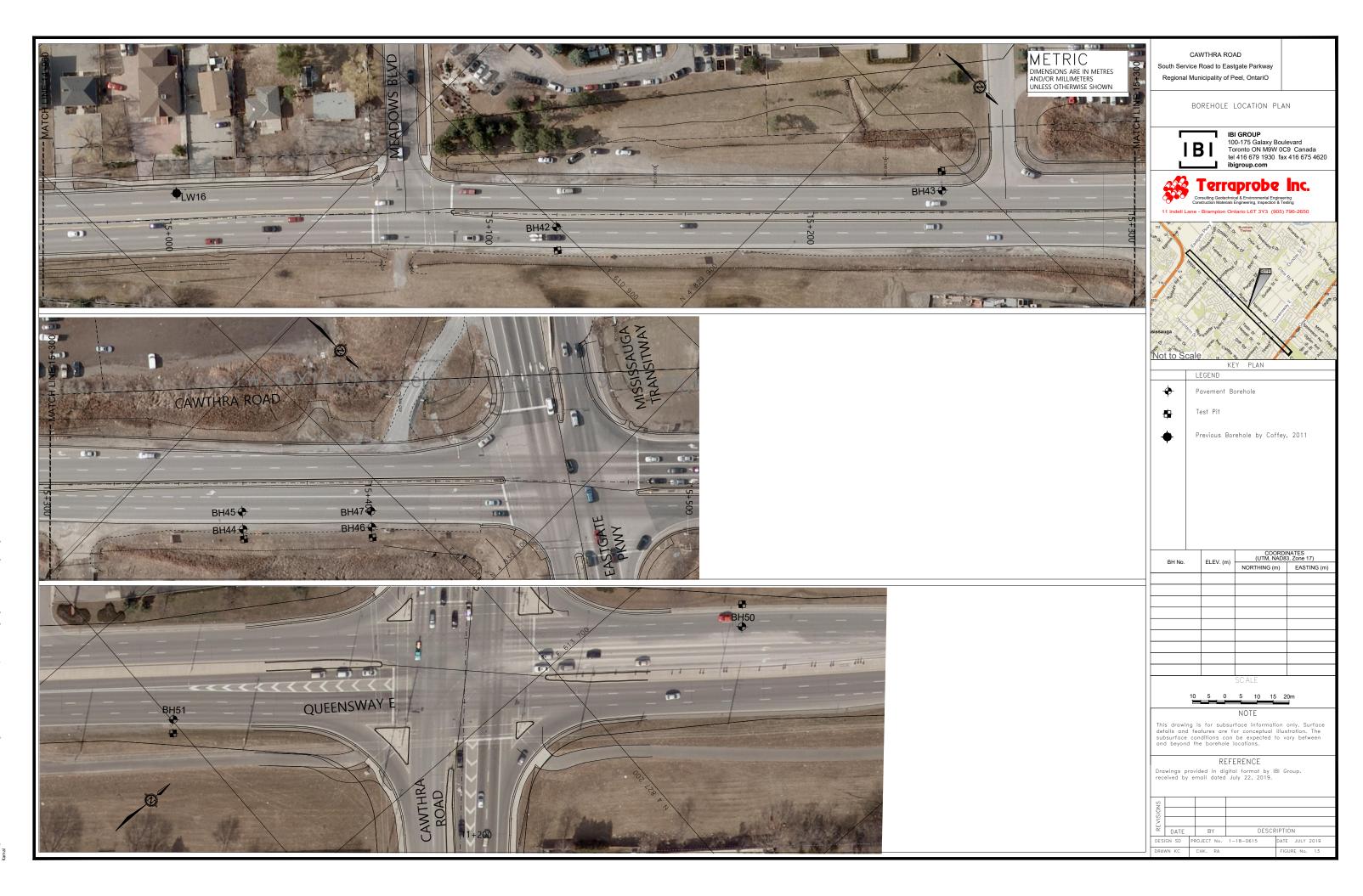

Project No. : 1-18-0615 Date : November, 2018

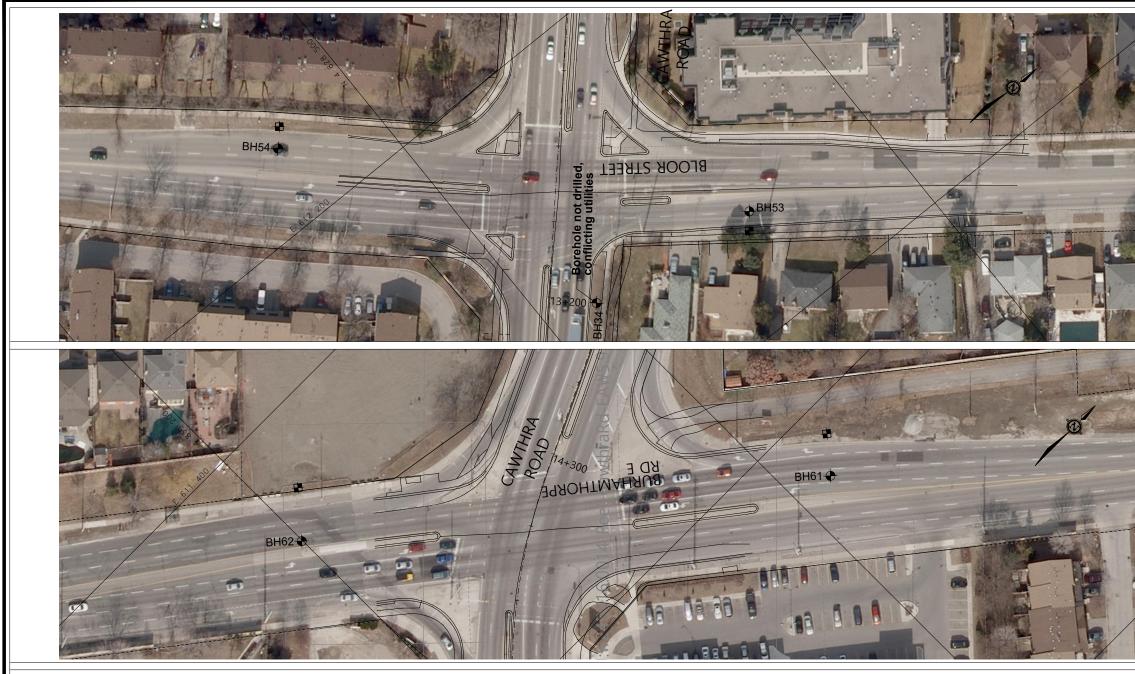



Prepared by : SD Checked by : RA


Che







METRIC				
DIMENSIONS ARE IN METRES AND/OR MILLIMETERS UNLESS OTHERWISE SHOWN	CA South Service Regional Mu		tgate Parkway	
	BC	DREHOLE	LOCATION PL	AN
	ĪE		I GROUP 10-175 Galaxy Bo pronto ON M9W I 416 679 1930 1 igroup.com	oulevard 0C9 Canada fax 416 675 4620
			La & Environmental Engin Engineering, Inspection & Matario LGT 3Y3 (90	
		aller a lange and a lange a la	Burnison Therpe the de the the the of d	
	413 200	and the second	Contraction of the second seco	and the second s
	Not to Scale	tone to Cantage	CAMAN AND AND AND AND AND AND AND AND AND A	
		avement B	orehole	
	-	est Pit		
TALL A				
	BHNa		COOF (UTM, NA	RDINATES D83, Zone 17)
	BH No.	ELEV. (m)	COOF (UTM, NA NORTHING (m)	
	BH No.	ELEV. (m)		
	BH No.	ELEV. (m)		
	BH No.	ELEV. (m)	NORTHING (m)	
	10	ELEV. (m)	NORTHING (m)	
		5 0	NORTHING (m)	20m
	10 This drawing i details and fe	5 0	NORTHING (m)	n only. Surface
	This drawing i details and fe subsurface cor and beyond th	5 0 s for subsu atures are f diffions can e borehole	NORTHING (m)	n only. Surface
	This drawing i details and fe subsurface cor and beyond th Drawings provi- received by er	5 0 s for subsu atures are f diffions can e borehole	NORTHING (m)	20m n only. Surface ustration. The vary between
	This drawing i details and fet subsurface cor and beyond th Drawings provi- received by en	5 0 s for subsu atures are f diffions can e borehole	NORTHING (m) NORTHING (m) SCALE 5 10 15 SCALE 5 10 15 Frace information be expected to locations. ERENCE bl format by IBI Jly 22, 2019.	n only. Surface lustration. The vary between

APPENDIX A Borehole Logs & Core Data

APPENDIX A1 (Current Investigation)

Ассер	acceptable	Gry	grey	Quant	quantity
Agg	aggregate	H	heavy	Reinf	reinforced
Amor	amorphous	Hi	highly	RF	rock fill
Asph	asphalt	HM	hot mix	RSS	remoulded shear strength
BH	borehole	HP	high plasticity	Sa (y)	sand (y)
BI	blue	lp	plasticity index	Sat	saturated
Bld (y)	boulder (y)	l I	loose	SH	shale
Blds	boulders	Liq	liquid	Sh Rk	shot rock
Blk	black	Lo	loam	Si (y)	silt (y)
Br	brown	Lt	light	SI (y)	slight (ly)
BR	bedrock	Matl	material	SP	slight plasticity
BU	break up	Max	maximum	SSM	select subgrade material
CF	channel face	MDD	maximum dry density	St	sensitivity
	clay (ey)	Med	medium	Stn (y)	stone (y)
Cl (y) Co	coarse	Med Mod	moderate	Stir (y) Stks	streaks
Cob	cobbles	Mott	mottled	Surf	surface
		MP	medium plasticity		
Comp	compact concrete	Mrl		Temp TH	temperature test hole
Conc Contam	contaminated		marl mulch	TP	
		Mul			test pit
Cord	corduroy	MWD	maximum wet density	Tps Tr	topsoil
Cr	crushed		no further progress	Tr	trace
D	dense	NFP (blds)	no further progress (boulders)	Unreinf	unreinforced
Decomp	decomposed	Num	numerous	USS	undisturbed shear strength
Dk	dark	Ob	overburden	Varv	varved
D _R	relative density	Occ	occasional	VF	very fine
E	earth	Ora	orange	W	field moisture content
F	fine	Org	organic	W	with
FB	frost boil	Org M	organic matter	WL	liquid limit
FH	frost heave	Pavt	pavement	Wd (y)	wood (y)
Fib	fibrous	Pedo	pedological	Weath	weathered
Fr Wat	free water	Pen Mac	penetration macadam	Wopt	optimum moisture content
Gr (y)	gravel (ly)	Poss	possible	Wp	plastic limit
Gran	granular	PST	prime and surface treated	WT	water table
Grn	green	Psty	polystyrene	Yel	yellow
	F				
		ONTARIO	PROVINCIAL STANDARD DRAWI	NG	Nov 2006 Rev 1
	SUSCEPTIBILITY TO FROST HEAVING				(SOP)
HSFH – H	igh		ABBREVIATIONS	- 1	IN I
MSFH - M				I -	💓
LSFH – Lo	ow		GEOTECHNICAL	l -	
					OPSD 100.060

PAVEMENT BOREHOLE LOGS Cawthra Road, from Station 9+960 to Station 15+460

Cawthra Road, From South Service Road to Eastgate Parkway, City of Mississauga NB, OFF Rd. (BH6) 10+030 SB, L1 (BH1) 10+560 0 - 100 Asph 0 - 150 Tps 100 - 310 Br Sa, Some Si, Some Gr, Tr Cl, Moist to Wet* Conc 150 - 600 600 - 1.80 Br Sa, Tr to Some Si, Tr Gr, Moist 310 - 560 Br Gran, Tr to Some Si, Dry 560 - 1.50 Br Sa, Tr Si, Tr Gr, Moist *Sample Depth = 150 - 600 10+030 SB, OFF Rd. (BH2) Passing 4.75 mm = 82% 0 - 140 2.00 mm = 82% Tps 425 µm = 77% 140 - 600 Br Si(y) Sa, Some Gr, Tr Cl, Moist* 600 - 1.20 75 µm = 24% Br Si(y) Sa, Tr Cl, Tr Gr, Moist 5 µm = 7% 1.20 - 1.80 Gry Sa, Tr to Some Si, Moist 2 µm = 5%*Sample Depth = 140 - 600 w = 13% Passing 4.75 mm = 89% Frost Susc. = LSFH 2.00 mm = 79% K factor = 0.16425 µm = 61% 75 µm = 26% 10+700 NB, L1 (BH7) 5 µm = 5% 0 - 90 Asph 2 µm = 4% 90 - 290 Conc w = 10%Br Gran, Tr to Some Si, Dry 290 - 740 Frost Susc. = LSFH Br Si(y) Cl to Cl(y) Si, Tr to Some Sa, Tr Gr, 740 - 1.50 K factor = 0.14Moist 10+100 NB, L1 (BH3) 10+700 SB, L2 (BH8) 0 - 100 Asph 0 - 95 Asph 100 - 305 Conc 95 - 285 Conc 305 - 620 Br Gran, Tr to Some Si, Dry 285 - 570 Br Gran, Tr to Some Si, Dry 620 - 1.50 Gry Sa, Tr to Some Gr, Moist 570 - 1.50 Br Si(y) Cl, and Sa, Tr Gr, Moist NB, L1 10 + 520SB, L1 (BH4) 10+780 (BH9) Asph 0 - 90 0 - 110 Asph 110-315 Conc 90 - 300 Conc Br Gran, Tr to Some Si, Dry 300 - 590 Br Gran, Tr to Some Si, Dry 315 - 710 710 - 1.50 Br Sa, Tr to Some Si, Tr Gr, Moist Br Si(y) Cl, Tr Sa, Tr Gr, Moist 590 - 1.50 10+560 NB, L1 (BH5) 10+860 NB, L1 (BH10) 0 - 100 Asph 0 - 100 Asph 100 - 280 Conc 100 - 345 Conc 280 - 690 Br Gran, Some Si, Drv* Br Gran, Tr to Some Si, Dry 345 - 670 690 - 1.50 Br Sa, Tr Gr, Moist 670 - 1.50 Br Sa, Tr to Some Si, Tr Gr, Moist *Sample Depth = 280 - 690 10+860 SB, L2 (BH11) Passing 26.5 mm = 100% 0 - 105 Asph 19 mm = 100%105 - 300 Conc 13.2 mm = 88% 300 - 590 Br Gran, Tr to Some Si, Dry 9.5 mm = 73% 590 - 1.50 Br Si(y) Cl, and Sa, Tr Gr, Moist 4.75 mm = 48% 1.18 mm = 24% 11+000 **NB**, L1 (BH12) 300 µm = 16% 0 - 80 Asph 75 µm = 11% 80 - 320 Conc w = 4% Br Gran, Tr to Some Si, Dry 320 - 620 Marginally Accep Gran A 620 - 1.50 Br Sa, Tr to Some Si, Tr Gr, Moist Marginally Accep Gran B, Type II

PAVEMENT BOREHOLE LOGS

Cawthra Road, from Station 9+960 to Station 15+460

Cawthra Road, From South Service Road to Eastgate Parkway, City of Mississauga

11+100 0 - 180 180 - 670 670 - 1.50	NB, L1 Asph Br Gran, Tr to Br Sa, Tr to Se	(BH13) Some Si, Dry ome Si, Tr Gr, Moist	* Pa
11+100 0 - 90 90 - 290 290 - 635 635 - 1.50	SB, L2 Asph Conc Br Gran, Tr to Br Sa, Tr to Se	(BH14) Some Si, Dry ome Si, Tr Gr, Moist	
11+340 0 - 110 110 - 290 290 - 590 590 - 1.10 1.10 - 1.20	SB, L1 Asph Conc Br Gran, Tr to Gry Si(y) Cl, a Br Sa, Tr to Se	nd Sa, Tr Gr, Moist	12+000 0 - 115 115 - 32(320 - 60(600 - 1.5
11+500 0 - 100 100 - 250 250 - 610 610 - 1.20 1.20 - 1.50	Br Sa, Tr to Se	(BH16) Some Si, Dry ome Si, Tr Gr, Moist Cl(y) Si, Tr Sa, Tr Gr, Moist	12+200 0 - 125 125 - 175 175 - 540 540 - 900 900
11+500 0 - 90 90 - 300 300 - 590 590 - 1.50		(BH17) Some Si, Dry ome Si, Tr Gr, Tr Cl, Moist	12+200 0 - 80 80 - 340 340 - 61(610 - 1.1
11+600 0 - 80 80 - 260 260 - 595 595 - 1.50	NB, L2 Asph Conc Br Gran, Tr to Br Sa, Tr to So	(BH18) Some Si, Dry ome Si, Tr Gr, Moist	12+470 0 - 85 85 - 195 195 - 590 590 - 900 900
11+800 0 - 100 100 - 290 290 - 530 530 - 1.50	Asph Conc Br Gran, Som	(BH19) e Si, Moist to Wet* a(y), Tr Gr, Wet**	Pa
	ample Depth = ing 26.5 mm = 19 mm = 13.2 mm = 9.5 mm = 4.75 mm = 1.18 mm = 300 µm = 75 µm = w = Not Accep Gra	100% 100% 93% 88% 80% 67% 46% 19% 10% an A	12+480 0 - 130 130 - 330 330 - 640 640 - 1.5

	imple Depth = ng 4.75 mm = 2.00 mm = 425 µm = 75 µm = 5 µm = 2 µm = w = Frost Susc. = K factor =	99% 98% 83% 74% 43% 29% 19% LSFH
2+000 - 115 15 - 320 20 - 600 00 - 1.50	NB, L1 Asph Conc Br Gran, Tr to Gry Weath SH	(BH20) Some Si, Dry I, Dry
	NB, L1 Asph Conc Br Gran, Tr to Gry Weath SH NFP	
0 - 340 40 - 610		(BH22) Some Si, Dry Cl, Tr Gr, Moist
2+470 - 85 5 - 195 95 - 590 90 - 900 00	NB, L2 Asph Conc Br Gran, Tr to Br Si(y) Sa, S NFP	(BH23) Some Si, Dry ome Cl, Some Gr, Moist*
	mple Depth = ng 4.75 mm = 2.00 mm = 425 μm = 5 μm = 2 μm = w = Frost Susc. = K factor =	85% 83% 69% 46% 19% 13% 7% LSFH
		(BH24) Some Si, Dry ome Si, Tr Gr, Moist

PAVEMENT BOREHOLE LOGS

Cawthra Road, from Station 9+960 to Station 15+460

Cawthra Road, From South Service Road to Eastgate Parkway, City of Mississauga

File No. 1-18-0615

	Br Gran, Tr to	(BH26) Some Si, Dry ome Si, Tr Gr, Moist	
12+700 0 - 135 135 - 335 335 - 640 640 - 1.50	Br Gran, Tr to	(BH27) Some Si, Dry Tr Si, Moist to Wet	
12+700 0 - 125 125 - 325 325 - 600 600 - 1.50	SB, L2 Asph Conc Br Gran, Tr to Br Sa, Tr to S	(BH28) Some Si, Dry ome Si, Tr Gr, Moist	
	NB, L2 Asph Br Gran, Tr to Br Sa, Some	(BH29) Some Si, Dry Si to Si(y), Tr Gr, Moist	
635 - 1.20		(BH30) Some Si, Dry ome Si, Tr Gr, Moist Cl(y) Si, Some Sa to Sa(y), Moist	
12+890 0 - 165 165 - 535 535 - 1.50		(BH31) Some Si, Dry ome Cl, Tr Gr, Moist*	
	ample Depth = ing 4.75 mm = 2.00 mm = 425 µm = 75 µm = 5 µm = 2 µm = w = Frost Susc. = K factor =	92% 87% 67% 44% 25% 18% 10% LSFH	
13+080 0 - 180 180 - 640 640 - 1.50		(BH32) Some Si, Dry a(y), Tr Gr, Moist	
13+140 0 - 180 180 - 540 540 - 1.50	NB, L2 Asph Br Gran, Tr S Gry Si(y) Cl, T	(BH33) i, Dry* Ir to Some Sa, Tr Gr, Moist	

Sample Depth = 180 - 540 Passing 26.5 mm = 100% 19 mm = 98% 13.2 mm = 85% 9.5 mm = 71% 4.75 mm = 47% 1.18 mm = 29% 300 µm = 17% 75 µm = 9% w = 2% Marginally Accep Gran A Marginally Accep Gran B, Type II 13+300 NB, L1 (BH35) 0 - 170 Asph Br Gran, Tr to Some Si, Dry 170 - 570 540 - 1.50 Br Si(y) Cl, Tr to Some Sa, Tr Gr, Moist 13+510 SB, L1 (BH36) 0 - 170 Asph Br Gran, Tr to Some Si, Dry 170 - 590 590 - 1.50 Gry Cl(y) Si, and Sa, Tr Gr, Moist 13+640 NB, L1 (BH37) 0 - 180 Asph 180 - 590 Br Gran, Tr to Some Si, Dry 590 - 1.50 Gry Cl(y) Si, and Sa, Tr Gr, Moist 13+900 SB, L1 (BH38) 0 - 190 Asph Br Gran, Tr to Some Si, Dry 190 - 530 530 - 1.50 Br Si(y) Cl, Sa(y), Tr Gr, Wet *Sample Depth = 530 - 1.50 Passing 4.75 mm = 98% 2.00 mm = 97% 425 µm = 88% 75 µm = 70% 5 µm = 36% 2 µm = 28% w = 18% Frost Susc. = LSFH K factor = 0.33 14+220 SB, L1 (BH40) 0 - 210 Asph Br Gran, Tr Si, Dry to Moist* 210 - 680 680 - 900 Br Sa, Tr to Some Si, Some Gr, Moist

PAVEMENT BOREHOLE LOGS Cawthra Road, from Station 9+960 to Station 15+460

Cawthra Road, From South Service Road to Eastgate Parkway, City of Mississauga

File No. 1-18-0615

	ample Depth = sing 26.5 mm = 19 mm = 13.2 mm = 9.5 mm = 4.75 mm = 1.18 mm = 300 µm = 75 µm = w = Accep Gran A Marginally Ac	100% 98% 85% 66% 44% 26% 14% 6% 6%
15+120 0 - 180	NB, L2 Asph	(BH42)
180 - 560 560 - 1.50	Br Gran, Tr to	Some Si, Moist r to Some Si, Moist
15+240 0 - 280	SB, L1 Asph	(BH43)
280 - 620 620 - 1.50	Br Gran, Tr to	Some Si, Moist r to Some Sa, Tr Gr, Moist
15+360 0 - 610 610 - 900 900 - 1.10	Br Gr(y) Sa, S	(BH44) Some Si, Dry Some Si, Tr Cl, Dry* r Gr, Moist
	ample Depth = sing 4.75 mm = 2.00 mm = 425 µm = 5 µm = 2 µm = w = Frost Susc. = K factor =	71% 53% 34% 23% 7% 5% 5% 5% LSFH
15+360 0 - 300 300 - 710 710 - 1.10 1.10 - 1.50	Br Si(y) Sa to	(BH45) , Dry to Moist* Sa(y) Si, Tr to Some Gr, Wet Cl(y) Si, Some Sa, Tr Gr, Moist

Sample Depth = 300 - 710 Passing 26.5 mm = 100% 19 mm = 100% 13.2 mm = 89% 9.5 mm = 65% 4.75 mm = 34% 1.18 mm = 15% 300 µm = 9% 75 µm = 6% w = 5% Accep Gran A Marginally Accep Gran B, Type II 15+400 NB, SH (BH 46) 0 - 780 Br Gran, Some Si, Dry 780 - 1.10 Gry Si(y) CI, and Sa, Tr to Some Gr, Moist 1.10 - 1.50 Br Si(y) Cl, Sa(y), Tr Gr, Moist *Sample Depth = 0 - 780 Passing 26.5 mm = 100% 19 mm = 98% 13.2 mm = 90% 9.5 mm = 74% 4.75 mm = 55% 1.18 mm = 33% 300 µm = 22% 75 µm = 15% w = 4% Not Accep Gran A Not Accep Gran B, Type II 15+400 NB, L1 (BH 47) 0 - 320 Asph Br Gran, Tr to Some Si, Dry 320 - 745 745 - 1.10 Gry Sa and Gr, Tr Si, Moist

PAVEMENT BOREHOLE LOGS

Intersecting Roads

ssauga

Aryn Drive Some Si, Dry me Si, Tr Gr, Moist Some Si, Dry me Si, Tr Gr, Moist Furning Lane Some Si, Dry me Si, Tr Gr, Moist ham Lane Some Si, Moist r to Some Cl, Tr Gr, Dry to Moist
me Si, Tr Gr, Moist sway East L1 Some Si, Dry me Si, Tr Gr, Moist Furning Lane Some Si, Dry me Si, Tr Gr, Moist ham Lane Some Si, Moist r to Some Cl, Tr Gr, Dry to Moist
me Si, Tr Gr, Moist sway East L1 Some Si, Dry me Si, Tr Gr, Moist Furning Lane Some Si, Dry me Si, Tr Gr, Moist ham Lane Some Si, Moist r to Some Cl, Tr Gr, Dry to Moist
me Si, Tr Gr, Moist sway East L1 Some Si, Dry me Si, Tr Gr, Moist Furning Lane Some Si, Dry me Si, Tr Gr, Moist ham Lane Some Si, Moist r to Some Cl, Tr Gr, Dry to Moist
Some Si, Dry me Si, Tr Gr, Moist Furning Lane Some Si, Dry me Si, Tr Gr, Moist nam Lane Some Si, Moist r to Some Cl, Tr Gr, Dry to Moist
L1 Some Si, Dry me Si, Tr Gr, Moist Furning Lane Some Si, Dry me Si, Tr Gr, Moist nam Lane Some Si, Moist r to Some Cl, Tr Gr, Dry to Moist
Some Si, Dry me Si, Tr Gr, Moist Furning Lane Some Si, Dry me Si, Tr Gr, Moist nam Lane Some Si, Moist r to Some Cl, Tr Gr, Dry to Moist
me Si, Tr Gr, Moist Furning Lane Some Si, Dry me Si, Tr Gr, Moist nam Lane Some Si, Moist r to Some Cl, Tr Gr, Dry to Moist
me Si, Tr Gr, Moist Furning Lane Some Si, Dry me Si, Tr Gr, Moist nam Lane Some Si, Moist r to Some Cl, Tr Gr, Dry to Moist
me Si, Tr Gr, Moist Furning Lane Some Si, Dry me Si, Tr Gr, Moist nam Lane Some Si, Moist r to Some Cl, Tr Gr, Dry to Moist
Furning Lane Some Si, Dry me Si, Tr Gr, Moist nam Lane Some Si, Moist r to Some Cl, Tr Gr, Dry to Moist
Some Si, Dry me Si, Tr Gr, Moist nam Lane Some Si, Moist r to Some Cl, Tr Gr, Dry to Moist
Some Si, Dry me Si, Tr Gr, Moist nam Lane Some Si, Moist r to Some Cl, Tr Gr, Dry to Moist
me Si, Tr Gr, Moist nam Lane Some Si, Moist r to Some Cl, Tr Gr, Dry to Moist
me Si, Tr Gr, Moist nam Lane Some Si, Moist r to Some Cl, Tr Gr, Dry to Moist
nam Lane Some Si, Moist r to Some Cl, Tr Gr, Dry to Moist
Some Si, Moist r to Some Cl, Tr Gr, Dry to Moist
r to Some Cl, Tr Gr, Dry to Moist
r to Some Cl, Tr Gr, Dry to Moist
r to Some Cl, Tr Gr, Dry to Moist
ek Boulevard
Some Si, Moist
to Some Sa, Moist
ne Sa to Sa(y), Moist
ee Gate
Some Si, Moist
me Si, Moist
or Street
2
Some Si, Dry to Moist
to Some Sa, Moist
14
L1
o Somo Si Moist
o Some Si, Moist
ome CI to CI(y), Dry
erg Avenue
Some Si, Moist

0	
	Hyacinthe Boulevard
3H56	WBL
) - 180	Asph
80 - 600	Br Gran, Tr to Some Si, Moist
600 - 1.50	Gry Si(y) Cl, Tr Sa, Moist
	Breckenridge Road
BH57	East Leg-EBL
) - 140	Asph
40 - 400	Br Gran, Tr to Some Si, Moist
00 - 1.00	Gry Si(y) Cl, Tr Sa, Moist
.00 - 1.50	Br Si(y) Cl, Tr Sa, Moist
3H58	West Leg-WBL
) - 180	Asph
80 - 500	Br Gran, Tr to Some Si, Moist
500 - 1.40	Br Si(y) Cl, Tr Sa, Moist
	Bunningbrook Drivo
3H59	Runningbrook Drive
) - 150	Asph
50 - 400	Br Gran, Tr to Some Si, Moist
00 - 1.50	Br Si(y) Cl, Some Sa to Sa(y), Tr Gr, Moist
	Hassall Road
3H60	EBL
) - 140	Asph
40 - 450	Br Gran, Tr to Some Si, Moist
50 - 1.50	Br Si(y) Sa, Tr Cl,Tr to Some Gr, Moist
	Burnhamthorpe Road East
3H61	East Leg-WB-L2
) - 250	Asph
250 - 700	Br Gran, Tr to Some Si, Moist
700 - 1.50	Gry Si(y) Cl, Tr Sa, Moist
3H62	West Leg-WB-L2
) - 240	Asph
240 - 650	Br Gran, Tr to Some Si, Moist
650 - 1.2	Br Gr(y) Sa, Tr to Some Si, Moist
.20 - 1.50	Br Si(y) Cl, Some Sa to Sa(y), Tr Gr, Moist

PAVEMENT CORE PHOTOGRAPHS AND DATA

	Job# 1-18-0615 Station#10+030, SBL,L	1		Station : Lift Type DFC HL8 Concrete Total	10+030, SBL, L1 Thickness (mm 50 50 210 310)
	Job# 1-18-0615 Station#10+100.NBLJ	1		Station 2 Lift Type DFC HL8 Concrete Total	10+100, NBL, L1 Thickness (mm 50 50 205 305	
	Job# 1-18-0615 Station#10+520, SBL,LT			Station : Lift Type DFC HL8 Concrete Total	10+520, SBL, L1 Thickness (mm 50 60 205 315	
-	3-0615 , 2019	2	Terraprobe Inc.		Prepared by : Checked by :	DP RA

PAVEMENT CORE PHOTOGRAPHS AND DATA

	Job# 1-18-0615 Station#10+560,NE			Station	10+560, NBL, L1	
				Lift Type	Thickness (mn	n)
				DFC	40	
				HL8	60	
				Concrete	180	
		+				
		7		Total	280	
	Job# 1-18-0615 Station#10+700,NB	L,L1		Station	10+700, NBL, L1	
				Lift Type	Thickness (mn	n)
				DFC	40	
				HL8	50	
				Concrete	200	
	and the second s					
	S.S.			Total	290	
	Job# 1-18-0615 Station#10+780,NBL,	11		Station	10+780, NBL, L1	
				Lift Type	Thickness (mn	n)
				DFC	50	_
				HL8	40	_
				Concrete	210	_
	and the second				200	-
				Total	300	
Project No. :	1-18-0615				Propared by :	
Project No. :			Terraprobe Inc.		Prepared by :	DP
Date :	July, 2019	**			Checked by :	RA

PAVEMENT CORE PHOTOGRAPHS AND DATA Station 11+100, NBL, L1 Job# 1-18-0615 Station#11+100,NBL,L1 Thickness (mm) Lift Type DFC 60 HL3 50 70 HL8 Total 180 Job# 1-18-0615 Station 11+340, SBL, L1 Station#11+340,SBL,L1 Lift Type Thickness (mm) DFC 60 HL8 50 Ĭ Concrete 180 290 Total Job# 1-18-0615 Station 11+500, NBL, L2 Station#11+500,NBL,L2 Thickness (mm) Lift Type DFC 40 HL8 60 Concrete 150 250 Total 1-18-0615 Prepared by : Project No. : DP Terraprobe Inc. Date : July, 2019 Checked by : RA

PAVEMENT CORE PHOTOGRAPHS AND DATA Station 11+500, SBL, L1 Job# 1-18-0615 Station#11+500, SBL,L1 Thickness (mm) Lift Type DFC 50 HL8 40 Concrete 210 Total 300 Job# 1-18-0615 Station 11+600, NBL, L2 Station#11+600,NBL,L2 Lift Type Thickness (mm) DFC 50 HL8 30 Concrete 180 Total 260 Job# 1-18-0615 Station#11+800, SBL,L1 Station 11+800, SBL, L1 Thickness (mm) Lift Type DFC 60 HL8 40 Concrete 190 290 Total 1-18-0615 Prepared by : Project No. : DP Terraprobe Inc. Date : July, 2019 Checked by : RA

PAVEMENT CORE PHOTOGRAPHS AND DATA

		Job# 1-18-0615				
	Sta	Job# 1-18-0615 tion# 12+200,SBL,L1		Station :	12+200, SBL, L1	
				Lift Type	Thickness (mm)	
				DFC	40	
	6 m	CC CT		HL8	40	
				Concrete	260	4
	5 2				ļ	4
				Total	340	
	St	Job# 1-18-0615 tation#12+620,NBL,L2	-	Station 1	12+620, NBL, L2	
				Lift Type	Thickness (mm))
				DFC	40]
				HL8	60	
	2			Concrete	190	4
		The second				-
				Total	290	
		Job# 1-18-0615		Station 2	13+080, SBL, L1	
	St	ation#13+080, SBL,L1		Lift Type	Thickness (mm))
				DFC	70	
				HL8	110	\downarrow
	NCH 9					-
·	N CA					-
	·			Total	180	+
					TOU	
Project No. :	1-18-0615		_		Prepared by :	DP
Date :	July, 2019	2	Terraprobe Inc.		Checked by :	RA
	-	V			-	

PAVEMENT CORE PHOTOGRAPHS AND DATA

	Job# 1-18-0615 Station#14+220, SBL,L1		Station Lift Type DFC HL8 HL8 Total	14+220, SBL, L1 Thickness (mm 50 120 40 210	ı)
	Job# 1-18-0615 Station#15+120,NBL,L2		Station : Lift Type DFC HL8 	15+120, NBL, L2 Thickness (mm 50 130 130 180)
	Job# 1-18-0615 Station#15+360,NBL,L1		Station : Lift Type DFC HL8 HL8 	15+360, NBL, L1 Thickness (mm 40 160 100 300)
Project No. : 1-18-0615 Date : July, 2019	5 58	Terraprobe Inc.		Prepared by : Checked by :	DP RA

TOPSOIL THICKNESSES

Cawthra Road, From Station 9+960 to Station 15+460

Cawthra Road, From South Service Road to Eastgate Parkway, City of Mississauga

	Cawthra Road	
Approximate Station No.	Location	Topsoil Thickness (mm
10+030	West of Centre Line	140
10+100	East of Centre Line	150
10+520	West of Centre Line	125
10+560	East of Centre Line	150
10+700	East of Centre Line	140
10+700	West of Centre Line	125
10+780	East of Centre Line	125
10+860	East of Centre Line	115
10+860	West of Centre Line	150
11+000	East of Centre Line	125
11+100	East of Centre Line	115
11+100	West of Centre Line	150
11+340	West of Centre Line	125
11+500	East of Centre Line	140
11+500	West of Centre Line	125
11+600	East of Centre Line	140
11+800	West of Centre Line	140
12+200	West of Centre Line	140
12+470	East of Centre Line	150
12+480	West of Centre Line	125
12.+620	East of Centre Line	140
12+700	East of Centre Line	115
12+700	West of Centre Line	125
12+800	East of Centre Line	125
12+890	East of Centre Line	140
12+890	West of Centre Line	125
13+080	West of Centre Line	115
13+140	East of Centre Line	140
13+300	East of Centre Line	125
13+510	West of Centre Line	125
13+640	East of Centre Line	140
13+990	West of Centre Line	140
14+220	West of Centre Line	150
15+120	East of Centre Line	140
15+240	West of Centre Line	140
15+360	East of Centre Line	150
15+400	East of Centre Line	125

TOPSOIL THICKNESSES

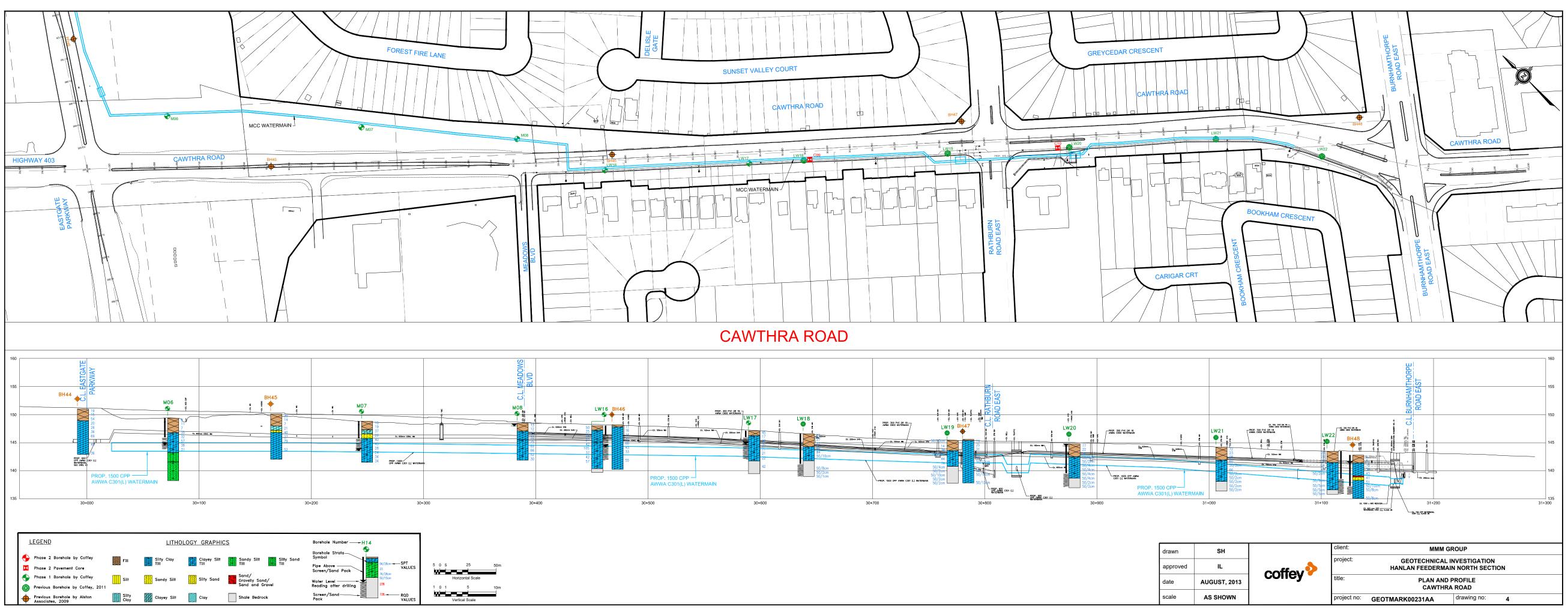
Cawthra Road, From Station 9+960 to Station 15+460

Cawthra Road, From South Service Road to Eastgate Parkway, City of Mississauga

	Intersecting Roads	
	Queensway East	
BH No.	Location	Topsoil Thickness (mm)
50	North of Centre Line	140
51	South of Centre Line	140
	Needham Lane Location	Tanaail Thioknoon (mm)
BH No.	South of Centre Line	Topsoil Thickness (mm) 180
66	South of Centre Line	160
	Santee Gate	
BH No.	Location	Topsoil Thickness (mm)
52	South of Centre Line	120
BUN	Bloor Street	T
BH No.		Topsoil Thickness (mm)
53	South of Centre Line	150
54	North of Centre Line	100
	Schomberg Avenue	
BH No.	Location	Topsoil Thickness (mm)
55	North of Centre Line	150
	Hyacinthe Boulevard	
BH No.	Location	Topsoil Thickness (mm)
56	North of Centre Line	120
	Breckenridge Road	
BH No.	Location	Topsoil Thickness (mm
57	South of Centre Line	110
58	North of Centre Line	130
	Runningbrook Drive	
BH No.	Location	Topsoil Thickness (mm
59	North of Centre Line	150
	Hassall Road	
BH No.	Hassall Road Location	Topsoil Thickness (mm

TOPSOIL THICKNESSES

Cawthra Road, From Station 9+960 to Station 15+460


Cawthra Road, From South Service Road to Eastgate Parkway, City of Mississauga

	Burnhamthorpe Road East	
BH No.	Location	Topsoil Thickness (mm)
61	North of Centre Line	120
62	North of Centre Line	150

02.00		
3.52	Terraprobe	Inc.

APPENDIX A2 (Previous Investigation)

drawn	SH		client:	
approved	IL	coffey	project:	GEOT HANLAN I
date	AUGUST, 2013	coney •	title:	
scale	AS SHOWN		project no:	GEOTMARK002

	NT: MMM Group	!							lethod: So		n Aug	enng							MARK00241A
	JECT LOCATION: Mississauga, Peel F	kegion)						Xameter: 1										MARNUU2417
	JM ELEVATION: Geodetic		c					L,	ate: May 2	.7, 2011	,						NCL NO	IQ	
ROK	EHOLE LOCATION: Cawthra Rd, See	UVVG,		SAMPL	<u></u>			0	YNAMIC CO		NETRA								
	SOIL PROFILE			SAUMITE T	23	щ		F						PLAST	C NAT	URAL MLRE	LICUID	нц Н	REMARKS AND
(m)		þ			ଷ୍ଟ	GROUND WATER	ź z)	0 D	Wp	CC	/Ténit W	- (142) W(UNIT WEIGHT	GRAIN SIZE
ELEV DEPTH	DESCRIPTION	STRATA PLOT	ER		BLOWS 0.3 In		ELEVATION					FIELD	VANE		γ	DISTRIBUTIC (%)			
		TRA	NUMBER	TYPE	,	NON:			QUICK T 20 4	RIAXIAL 10 5(ANE 00				יד (%) 30		
0.0	Ground Surface 150mm ASPHALT	00 1000	z 8	<u>۲</u>	÷		<u>w</u> c	+					1				-	(KN401')	GR SA SI (
0.0	650mmGRANULAR		<u>}</u>										1						
			1	SS	67		ŝ							0					
	FILL clayey silt to silty clay, trace sand			2000	1000		<u> </u>					11							
1	and gravel, brown, very sliff		1			₿.	8					- II							
			2	ss	27	×.	×						í –	4	2				2 39 40
			<u> </u>			8	8												
						8	×.					1							
	hard					₿v	Ø												
			3	SS	32	8	×							1	0				
					<u> </u>	8	X					110	ļ						
							8							6					
2.3	CLAYEY SILT (Glacial TIII)	B	1.	50											a a				6 31 43 2
	sandy, trace gravel, grevish brown,	1	4	SS	60	8	8									1			0 31 33
	hard (CL-ML)		1-		-	8	¥						1						grinding from
				-		8	×												2.7m to 3m
	grey		5	55	84		*							6					
						×	8							557					
						8	X												avera adadi
			6	SS	507	×	8						ļ –	G					ander öylugin
			Ť		<u>00</u> m	櫾	8						1						
																			hard auger grinding from
														j,					4.1m to 4.4m
4.8	SHALE		1-																
	grey		7	ss	60									0					
		-	-																
		1																	
					69/														
			8	ss ;	90mr	•								0					
			1 -										Į –						
			Ļ		60)		0]		0	[unter
	wet		9	<u>ss</u>	50) 75mm	E									<i>а</i>				water encountered
						E							ţi —						
						E							1						
			10	<u>ss</u>	50/	E							}	5					
					<u>25mr</u>														
						E													Cave-In
			11		50/		i.						Į						
7.6	END OF BOREHOLE	F	1		15mn		-	╉											
	Date Water Level EL/Depth (m)		1														f		
	upon completion 4.8		1														{		
	17 June 2011 1.7		1																
			Ι.																
			1													1	1		
								- L		1 1			1				1 1		

coffey bettechnics

PROJECT: Local Watermain-Hanlan FM North

DRILLING DATA

Method: Solid Stem Augeric

<u>GRAPH</u> + ³,×³: Numbers refer NOTES + ³,×³: Lo Sensitivity

1 OF 1

geotechnics coffey

LOG OF BOREHOLE LW19

DRILLING DATA

Diameter: 150mm

Date: May 30 2011

Method: Solid Stem Augering

REF, NO .: GEOTMARK00241AA

ENCL NO.: 17

PROJECT: Local Watermain-Hanlan	FM North
---------------------------------	----------

CLIENT: MMM Group

PROJECT LOCATION: Mississauga, Peel Region

DATUM ELEVATION: Geodelic

BOREHOLE LOCATION: Cawthra Rd and Rathburn Rd, See DWG.5

	SOIL PROFILE		s	AMPL	ES	æ		RESI	STANC	DNE PE E PLOT	\geq			PLAST	C NAT	ILRAL STURE	LIQUID LIXIT	<u>ب</u>	REMARKS
(m) ELEV DEPTH	DESCRIPTION Ground Surface	STRATA PLOT	NUMBER	TYPE	-N- BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE 0 L • C	AR ST INCONI	RENG TINED RIAXIA	тн (k тн (k - +	Pa) FIELD LAB V			CCA TER C		₩. 1	NNT VIEIGHT	AND GRAIN SIZE DISTRIBUTIO (%) GR SA SI
0.0	150mm ASPHALT 450mmGRANULAR		7		50/							1	Ì						
	FILL silty clay, trace sand, greyblack, silf, thinly laminated		2	SS	00mg	ו										0			
			3	55	36										٥				PPT of 430 kPa
1.8	CLAYEY SILT (Glacial Till) sandy, some gravel,shale fragments, brown, hard (CL-ML)																		
	fragments, brown, hard (CL-ML)		4	SS	50/ 49mn										ø				
ł	grey		5	ss	44									a) H	1			12 31 42 PPT >500
			в	ss	74									¢					auger grind
1																			auger grind
4.6	SHALE grey		7	SS	50/ 40กาก	r.													auger grind
			8	SS	50/ 25mm	h								¢					
			9	ss	50/ 00mg	n								0					
			10	SS	50/ 1 <u>5mm</u>														labored augering labored augering fr 7m to 7.6m Cave-in
			11/	ss	50/ 25/m/				-	1		1	1	٥			1	ļ	
7.6	END OF BOREHOLE Date Water Level EL (m) upon completion dry																		
						GRAPH			Numb	l Ins refer		R=34	Strain						

LOG OF BOREHOLE LW20

Method: Solid Stern Augering

Diameter: 150mm

Date: May 27, 2011

PROJECT LOCATION: Mississauga, Peel Region DATUM ELEVATION: Geodetic

CLIENT: MMM Group

BOREHOLE LOCATION: Cawlhra Rd, See DWG.5

coffey ⁽²⁾ geotechnics

	SOIL PROFILE	_	S	SAMPL	.55	æ			RESIS	TANC	DNE PE E PLOT	\geq			PLASTIC LIMIT	NATI	URAL TLTPE	LIQUID	느토	REMAR	
(m) <u>V313</u> HT930	DESCRIPTION	STRATA PLOT	NUMBER	Ш	BLOWS 0.3 m	GROUND WATER	SNOTION	ELEVATION	SHE/ oU	AR ST NCONF	RENG	тн (k -	1	VANE	w, 			υκιτ ₩ι Τ (%)	VNIT VNIT	AND GRAIN (DISTRIBL (%)	siz Itl
	Ground Surface	STR	NUN	ТүРЕ	Ż	y g	8	ELE						00	1			20	(kN/m²)_	GR SA S	ŝI
0.0	150mm ASPHALT 550mm GRANULAR	***	_										1								
	SSUMMGRANULAR FILL clayey silt, trace sand and gravel, brown, very stiff to hard		1		77		****								0						
			2	ss	22										1011	0					
			3	ss	36	$\infty -$	603									٥					
2.3	SILTY CLAY		_		50/															3 25 4	10
	(Glacíal Till) sandy, Irace gravel, greyìsh brown, hard (CL)		4	SS	38 50/ 40mn											,) -				0 20 4	.2
	grey		5	SS	50/ 25mm										0						
			6	ss											o						
			7	SS	50/ 40mn 50/ 140mn										٥					auger gri from 4.34 4.6m	ir n
			8	55	50/											ı					
							,								0						
6.1	SHALE grey		9	SS	50/ 4 <u>0mr</u> r										Ū						
			ر10	<u>ss</u>	50/ 1 <u>5mr</u>											٥					
			11	SS /	50/	111															
7.8	END OF BOREHOLE Date Water Level EL./Depth(m) upon completion 6.6 17 June 2011 1.5				(<u>15mm</u>)		1.			ř											-

NOTES + 3, × 3; Numbers rele

PROJECT: Local Watermain-Hanlan FM North

	OF	BOREHOL	F	I W21
LOG	Ur	DORLIOL	<u> </u>	

DRILLING DATA

Method: Solid Stem Augering

Diameter: 150mm

Date: May 30, 2011

REF. NO .: GEOTMARK00241AA ENCL NO.: 19

BOREHOLELOCATION: Caudhra Rd. See DWG 5

	SOIL PROFILE	_	5	SAMPL	ES	l		RES	ISTAN	ČE I	PLOT	\geq		•	PLAST	IC NA	TURAL ISTURE	LIOUAD	. ₽	REMAR	
(nı) <u>ELEV</u> DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	ų	BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	0	20 EAR S UNCOI	NFIN		TH (1			₩⊳		W W -C	۵۵۵۵۲ ۳۲ ۳۲ ۳۲ (%)	- UNIT WEIGHT	AND GRAIN S DISTRIBU (%)	51) JT
	Ground Surface	STR	NUI	TYPE	, ,,	C GR	ELG		20	40				100			20	30	(kN/m ³)	GRSAS	5)
0.0	188mm ASPHALT 500mmGRANULAR FILL clayay silt, trace sand and gravel,		1	ss	72	-									٥						
	brown, very stilf		2	SS	23											0					
						-															
			3	SS	28	-										o					
2.3	CLAYEY SILT to SILTY CLAY (Glacial Till) some sand to sandy, trace gravel, shale and limestone fragments, grey, hard (CL-ML to CL)		4	SS	60											٥					
			5	SS	50/ 25mm										in the second se	4					
			6	ss	66	-									o	-				11 27 4	
			-7	SS	50/	-															
			-		1 <u>25m</u> r															auger gri from 4.7r 5.2m	1
			8	SS	50/ 25mn									0	¢	2					
6.1	SHALE grey		٩	<u>ss</u>	50/ 25mm										٥					spcon wa	
	weł		10	ss	50/																
			11	ŝs	25m/1 50/ 25m/1															auger gri from 7m 7.6m	t
7.6	END OF BOREHOLE Date Water Level EL/Depth(m) upon completion 3.8																				
						GRAPH NOTES	÷3	×3:	Numt	ered initen	refer vity		0 6=3	^{1%} Strain	at Failu	ure	İ				

PROJECT: Local Watermain-Hanlan FM North CLIENT: MMM Group

PROJECT LOCATION: Mississauga, Peel Region

coffey geotechnics

DATUM ELEVATION: Geodetic

LOG	OF	BOR	EHO	LE	LW22
-----	----	-----	-----	----	------

DRILLING DATA

Diameter: 150mm

Date: May 27, 2011

Method: Solid Stem Augering

PROJECT: Local	Watermain-Hanian	FM North

coffey geotechnics

CLIENT: MMM Group

PROJECT LOCATION: Mississauga, Pael Region

DATUM ELEVATION: Geodetic

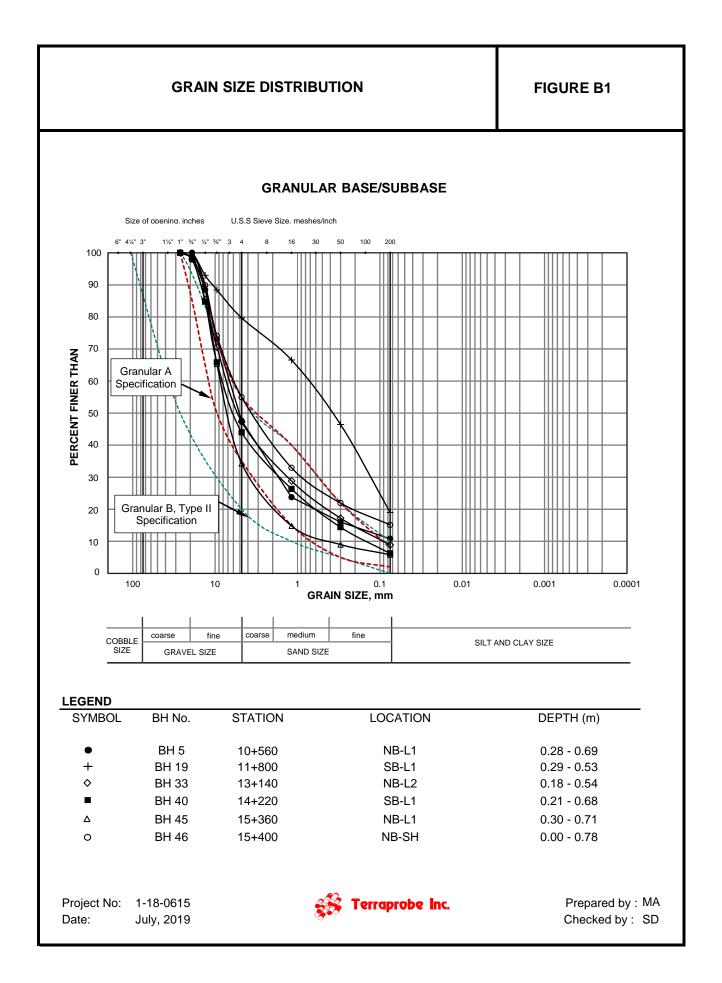
BOREHOLE LOCATION: Cawfins Rd, Sea DWG.5

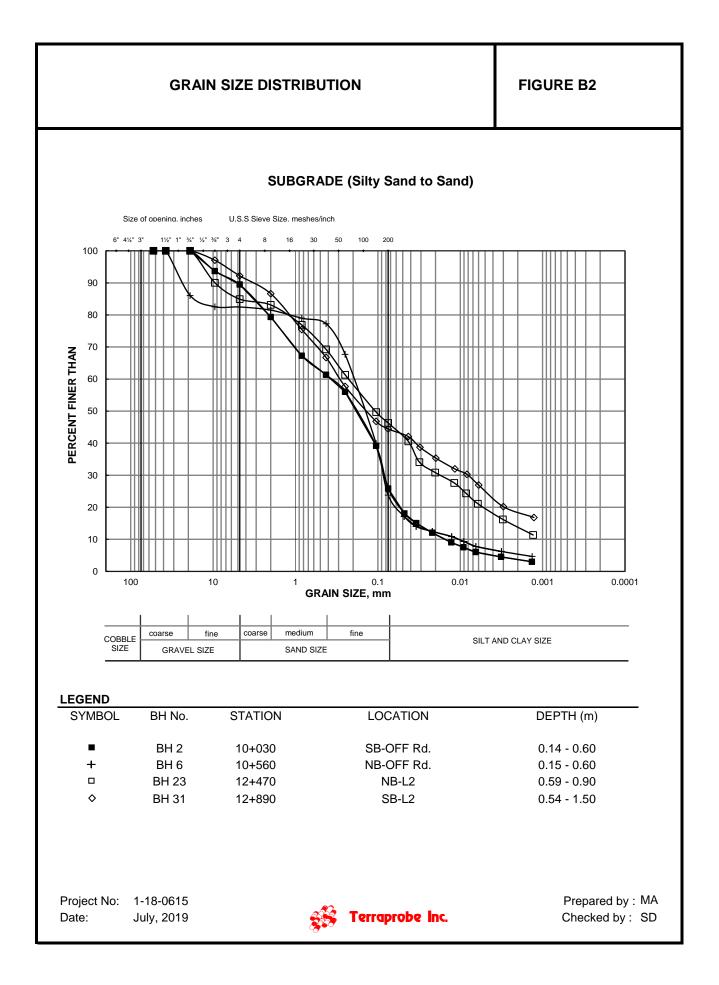
			SAMPL	.ES	<u>۳</u>				PLOT			PLASTH LIMIT	MOIS	URAL	נוסטים נואוד	нщ	REMA	
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT NUMBER	TYPE	"N" BLOWS 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHE ou • C	AR STI NCONF	INED	ГН (Ю + ×	Pa) FIELD ' LAB V/	₩ _P 	ER CO		~((KN/m ³)	GRAIN DISTRIB (% GR SA	SIZE UTIOI
0.0	Ground Surface 213mm ASPHALT 375mm GRANULAR	<u>*</u>						Í				İ		1	† –	(
	FILL clayey silt, trace sand end gravel,	1		20								0						
	brown molted grey, very stiff to hard	2	ss	24									D					
		3	ss	33	X-48								•					
2.0	CLAYEY SILT (Glacial Till) trace sand and gravel, brown, hard, shale and limestone fragments	4	SS	66								c	. ⊢	-1			2 25	48
	becoming silty clay, gray	5	SS	42									٥					
		6	ss	50/ 25mr									□ -				4 17	49
		7	SS	50/ 125mr														
		8	ss	50/ 75mm														
		9	ss	50/ 50mm								0					spoon w	/el
6.9	SHALE	10	SS S	50/									٥					
	gray			50mm														
7.7	END OF BOREHOLE	-	-	50mrg	nital a					-	1			<u> </u> 	1			
	Date Water Level EL./depth(m) upor completion 6.6 17 June 2011 1.7																	
		1	1	1	ı									h.	1	1		

REF. NO .: GEOTMARK00241AA

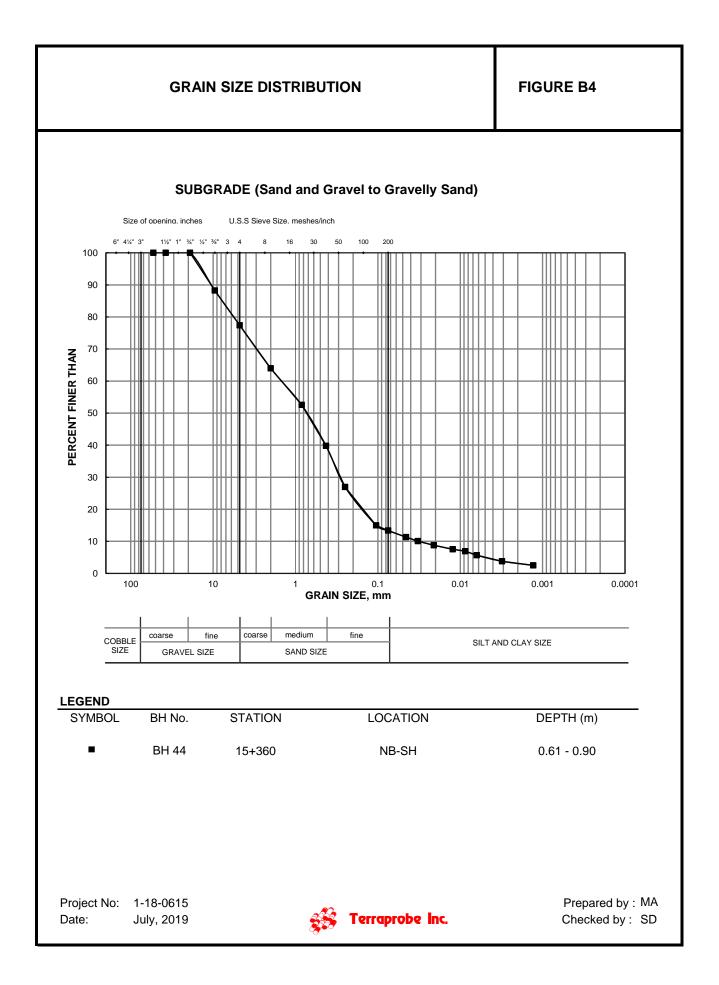
ENCL NO.: 20

	coffey				LC)G O	of BC	REF	OLE	LW	16								1 OF 1
CLIEN PROJ DATU	ECT: Hanlan Feedermain North NT: MMM Group Limited ECT LOCATION: City of Mississauga IM ELEVATION: Geodetic EHOLE LOCATION: N 4829762.5 E 6	10975	5.2					Meth Dian Date	od: Ho neter: 2 : 2011	DATA Illow S 200 mn 10 28	n	-	-				EF. NC		MARK00231AA
	SOIL PROFILE		S	SAMPL	ES	~		DYN/ RESI	AMIC CO STANC	DNE PE E PLOT		ATION >		PLAST		URAL	LIQUID	. +	REMARKS
(m) <u>ELEV</u> DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	түре	" BLOWS 0.3 m	GROUND WATER CONDITIONS	EVATION	ο ι	AR ST	I RENG INED RIAXIAI	L TH (F + - ×	FIEL		WA			LIMIT WL T (%)	λ Weight	AND GRAIN SIZE DISTRIBUTION (%)
140.0	Ground Surface ~120 mm asphalt	S S	ž	F	ż	00	-Conc		20	40 6	50	80	100	-	10 2	20 :	30	(kN/m ³)	GR SA SI CL
0.1	FILL crushed limestone		1	SS	50		Conc							0					
0.8	SILTY CLAY TILL sandy trace gravel brown von ctiff		2	SS	25		-Bent 14	onite							o				
	very stiff		3	SS	28		W. L.	146.0	m						a —	-1			3 30 45 22
			4	SS	27	NEWE NEW	<u></u>	6, 201 filter							0				
145.1 2.9	CLAYEY SILT TILL																		
2.5	sandy trace of gravel some cobbles brown to grey		5	SS	42		14								0				
	hard		6	SS	105		W. L. Jul 04	5, 2012	1 m 2					0					5 36 41 18
			7	SS	37		Scre	en						0					
					57		14	3											
			8	SS	42		14	2							0				5 34 47 14
			9	SS	57										¢				
							14	1											
140.4					07/														
7.6	SHALE BEDROCK grey		10	SS	97/ 225 mm		<u>_</u>							0					
139.7			11	SS	52/ 150		-Bent	onite						0					
8.3	END OF BOREHOLE 50mm-diameter monitoring well installed to 6.1 m. <u>Water Level Date</u> <u>Depth (m)</u> February 6, 2012 2.00				\ <u>mm</u>														
	July 5, 2012 3.78																		


	coffey				LC)G O	F BO	REHOLE	LW1	7							1 OF 1
CLIEN PROJ DATU	ECT: Hanlan Feedermain North NT: MMM Group Limited ECT LOCATION: City of Mississauga IM ELEVATION: Geodetic EHOLE LOCATION: N 4829673.6 E 6	11068	3.3					DRILLING I Method: Ho Diameter: 2 Date: 2011	low Ste 00 mm 10 31	-	-				EF. NO NCL NO		MARK00231AA
	SOIL PROFILE		S	Sampl	ES	~		DYNAMIC CC RESISTANCE	NE PEN PLOT		ON	PI ASTI		URAL	LIQUID	г	REMARKS
(m) ELEV DEPTH	DESCRIPTION	STRATA PLOT	NUMBER	ТҮРЕ	"N" <u>BLOWS</u> 0.3 m	GROUND WATER CONDITIONS	ELEVATION	SHEAR ST O UNCONF QUICK TI	NED	TH (kPa + Fl × L	a) IELD VANE AB VANE		TER CO	w o ONTEN ⁻		ν κ ΓΙΝΠ γ	AND GRAIN SIZE DISTRIBUTION (%)
<u>147.1</u> 14 0.0 0.1	Ground Surface ~120 mm asphalt FILL crushed limestone	<i>o</i>	2	⊢ SS	<u></u> 45	00	ш 147 -Conc					0				(kN/m ³)	GR SA SI CL
140.0							Donte	nite									
<u>146.3</u> 0.8	CLAYEY SILT TILL sandy trace to some gravel some cobbles		2	SS	17		-Bento						0				
	brown / grey very stiff to hard		1				-Sand	filter									
			3	SS	22		145						0				
			4	SS	25		W. L.	144.70 m , 2012					∘⊢				10 33 40 17
			5	SS	71		144					0					
			6	SS	21		Scree	in I									
							143						>				
	shale fragments		7	SS	22			142.6 m , 2011					0				9 38 35 18
	inferred cobble/ boulder		 				142										auger grinding
<u>141.8</u> 5.3	SHALE BEDROCK grey	rи	8	SS	50/		2 -										
	9107				mm		141										spoon bouncing
			9	SS	42		2 141						Þ				
							-Bento	nite									
139.5 7.6	END OF BOREHOLE		10	SS	Refusa								•				
1.0	Water lever at 4.5 m (not stabilized) upon completion.50mm-diameter monitoring well installed to 5.0 m.Water Level Date October 31, 2011Depth (m) 4.55																
	October 31, 2011 4.55 July 5, 2012 2.37																


COFFEY SOIL LOG -2 GEOMARK00231AA HANLAN NORTH (REVISED ON AUG17, 2012).GPJ 31/7/13


 $\frac{\text{GRAPH}}{\text{NOTES}} \quad + {}^3, \times {}^3: \begin{array}{c} \text{Numbers refer} \\ \text{to Sensitivity} \end{array}$


APPENDIX B Laboratory Test Results

APPENDIX C Certificate of Chemical Analysis (Soil Chemistry)

CA14532-JUN19 R1

1-18-0615 C.awthra Rd - Mississauga

Prepared for

Terraprobe Inc

First Page

CLIENT DETAILS	3	LABORATORY DETAIL	LS
Client	Terraprobe Inc	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	11 Indell Lane	Address	185 Concession St., Lakefield ON, K0L 2H0
	Brampton, ON		
	L6T 3Y3. Canada		
Contact	Sepideh D_Monfared	Telephone	705-652-2143
Telephone	(905) 796-2650	Facsimile	705-652-6365
Facsimile	(905) 796-2250	Email	brad.moore@sgs.com
Email	smonfared@terraprobe.ca	SGS Reference	CA14532-JUN19
Project	1-18-0615 C.awthra Rd - Mississauga	Received	06/12/2019
Order Number		Approved	06/17/2019
Samples	soil (4)	Report Number	CA14532-JUN19 R1
_		Date Reported	08/08/2019

COMMENTS

Temperature of Sample upon Receipt: 4 degrees C Cooling Agent Present:YES Custody Seal Present:NO

Chain of Custody Number:007156

SIGNATORIES

SGS Canada Inc. 185 Concession St., Lakefield ON, K0L 2H0

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-5
Exceedance Summary	6
QC Summary	7-11
Legend	12
Annexes	13

CA14532-JUN19 R1

Client: Terraprobe Inc

Project: 1-18-0615 C.awthra Rd - Mississauga

Project Manager: Sepideh D_Monfared

Samplers: Mayed Abdlrahem

PACKAGE: REG153 - Hydrides (S	SOIL)		Sa	mple Number	8	9	10	11	
			s	Sample Name	Station 10+030,	Station 10+700,	Station 13+900,	Station 15+400,	
					SBL,	NBL,	SBL,	NBSH,	
					295mm-560mm	285mm-740mm	190mm-530mm	0mm-780mm	
1 = REG153 / SOIL / COARSE - TABLE 1 - Resider	ential/Parkland/Industrial - UNDEFIN	ED		ample Matrix	soil	soil	soil	soil	
2 = REG153 / SOIL / COARSE - TABLE 3 - Industri	rial/Commercial - UNDEFINED			Sample Date	06/06/2019	06/06/2019	03/06/2019	03/06/2019	
Parameter	Units	RL	L1	L2	Result	Result	Result	Result	
lydrides									
Antimony	hð/ð	0.8	1.3	40	< 0.8	< 0.8	< 0.8	< 0.8	
Arsenic	hð\ð	0.5	18	18	3.6	3.5	3.4	4.1	
Selenium	μg/g	0.7	1.5	5.5	< 0.7	< 0.7	< 0.7	< 0.7	
ACKAGE: REG153 - Metals and	d Inorganics (SOIL)		Sa	mple Number	8	9	10	11	
			s	Sample Name	Station 10+030,	Station 10+700,	Station 13+900,	Station 15+400,	
					SBL,	NBL,	SBL,	NBSH,	
					295mm-560mm	285mm-740mm	190mm-530mm	0mm-780mm	
1 = REG153 / SOIL / COARSE - TABLE 1 - Resider	ential/Parkland/Industrial - UNDEFIN	ED		ample Matrix	soil	soil	soil	soil	
2 = REG153 / SOIL / COARSE - TABLE 3 - Industri	rial/Commercial - UNDEFINED			Sample Date	06/06/2019	06/06/2019	03/06/2019	03/06/2019	
Parameter	Units	RL	L1	L2	Result	Result	Result	Result	
letals and Inorganics									
Moisture Content	%	-			3.8	7.1	2.8	5.5	
Barium	µg/g	0.1	220	670	8.8	22	11	14	
Beryllium	μg/g	0.02	2.5	8	0.09	0.15	0.08	0.11	
Boron	µg/g	1	36	120	6	4	4	5	
Cadmium	µg/g	0.02	1.2	1.9	0.26	0.21	0.54	0.37	
Chromium	µg/g	0.5	70	160	4.2	7.2	2.9	12	
Cobalt	µg/g	0.01	21	80	3.4	6.7	1.9	2.8	
Copper	µg/g	0.1	92	230	11	15	7.2	28	
Lead	µg/g	0.1	120	120	18	18	22	29	
Molybdenum	μg/g	0.1	2	40	0.6	0.6	0.5	0.7	
	ra, a	0.1	-	10					

CA14532-JUN19 R1

Client: Terraprobe Inc

Project: 1-18-0615 C.awthra Rd - Mississauga

Project Manager: Sepideh D_Monfared

Samplers: Mayed Abdlrahem

					_			
PACKAGE: REG153 - Metals and Ino	rganics (SOIL)			mple Number	8	9	10	11
			8	Sample Name		Station 10+700,	Station 13+900,	Station 15+400,
					SBL,	NBL,	SBL,	NBSH,
					295mm-560mm	285mm-740mm	190mm-530mm	0mm-780mm
L1 = REG153 / SOIL / COARSE - TABLE 1 - Residential/Pa		NED		ample Matrix	soil	soil	soil	soil
L2 = REG153 / SOIL / COARSE - TABLE 3 - Industrial/Con				Sample Date	06/06/2019	06/06/2019	03/06/2019	03/06/2019
Parameter	Units	RL	L1	L2	Result	Result	Result	Result
Metals and Inorganics (continued)			1					
Nickel	µg/g	0.5	82	270	5.9	7.7	5.1	7.1
Silver	µg/g	0.05	0.5	40	0.11	0.08	< 0.05	0.07
Thallium	µg/g	0.02	1	3.3	0.06	0.06	0.07	0.06
Uranium	µg/g	0.002	2.5	33	0.15	0.21	0.15	0.18
Vanadium	µg/g	3	86	86	5	10	6	6
Zinc	µg/g	0.7	290	340	120	86	150	140
Water Soluble Boron	hð/ð	0.5		2	< 0.5	< 0.5	< 0.5	< 0.5
PACKAGE: REG153 - Other (ORP) (S	SOIL)		Sa	mple Number	8	9	10	11
			5	Sample Name	Station 10+030,	Station 10+700,	Station 13+900,	Station 15+400,
					SBL,	NBL,	SBL,	NBSH,
					295mm-560mm	285mm-740mm	190mm-530mm	0mm-780mm
L1 = REG153 / SOIL / COARSE - TABLE 1 - Residential/Pa	arkland/Industrial - UNDEFII	NED		ample Matrix	soil	soil	soil	soil
2 = REG153 / SOIL / COARSE - TABLE 3 - Industrial/Con	mmercial - UNDEFINED			Sample Date	06/06/2019	06/06/2019	03/06/2019	03/06/2019
Parameter	Units	RL	L1	L2	Result	Result	Result	Result
Other (ORP)								
Mercury	µg/g	0.05	0.27	3.9	< 0.05	< 0.05	< 0.05	< 0.05
Sodium Adsorption Ratio		0.2	2.4	12	2.4	10.4	12.3	10.5
SAR Calcium	mg/L	0.09			30.8	24.5	12.2	9.2
SAR Magnesium	mg/L	0.02			8.0	1.3	6.4	5.1
SAR Sodium	mg/L	0.15			57.7	199	210	154
Conductivity	mS/cm	0.002	0.57	1.4	0.56	1.2	1.2	0.96

CA14532-JUN19 R1

Client: Terraprobe Inc

Project: 1-18-0615 C.awthra Rd - Mississauga

Project Manager: Sepideh D_Monfared

Samplers: Mayed Abdlrahem

PACKAGE: REG153 - Other (ORP) (S	SOIL)		s	ample Number	8	9	10	11
				Sample Name	Station 10+030,	Station 10+700,	Station 13+900,	Station 15+400,
					SBL,	NBL,	SBL,	NBSH,
					295mm-560mm	285mm-740mm	190mm-530mm	0mm-780mm
L1 = REG153 / SOIL / COARSE - TABLE 1 - Residential/Pa	arkland/Industrial - UNDEFIN	IED		Sample Matrix	soil	soil	soil	soil
L2 = REG153 / SOIL / COARSE - TABLE 3 - Industrial/Com	nmercial - UNDEFINED			Sample Date	06/06/2019	06/06/2019	03/06/2019	03/06/2019
Parameter	Units	RL	L1	L2	Result	Result	Result	Result
Other (ORP) (continued)								
рН	pH Units	0.05			11.06	11.50	8.36	8.41
Chromium VI	µg/g	0.2	0.66	8	< 0.2	< 0.2	< 0.2	0.3
Free Cyanide	hā\ð	0.05	0.051	0.051	< 0.05	< 0.05	< 0.05	< 0.05

EXCEEDANCE SUMMARY

				REG153 / SOIL /	REG153 / SOIL
				COARSE - TABLE	COARSE - TAB
				1 -	3 -
				Residential/Parklan	Industrial/Comm
				d/Industrial -	cial - UNDEFINE
				UNDEFINED	
Parameter	Method	Units	Result	L1	L2
Conductivity	EPA 6010/SM 2510	mS/cm	1.2	0.57	
Sodium Adsorption Ratio	MOE 4696e01/EPA 6010	µg/g	10.4	2.4	
tion 13+900, SBL, 190mm-530mm					
Conductivity	EPA 6010/SM 2510	mS/cm	1.2	0.57	
Sodium Adsorption Ratio	MOE 4696e01/EPA 6010	hð\ð	12.3	2.4	12
tion 15+400, NBSH, 0mm-780mm					
Conductivity	EPA 6010/SM 2510	mS/cm	0.96	0.57	

Conductivity

Method: EPA 6010/SM 2510 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference	RPD AC Spike		Recovery Limits (%)		Spike Recovery	Recover (9	-				
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0265-JUN19	mS/cm	0.002	<0.002	0	10	99	90	110	NA		

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Matrix Spike / R		₹ef.	
	Reference			Blank	RPD	AC	Spike		ery Limits	Spike		ry Limits	
						(%)	Recovery	(%)	Recovery	(9	%)	
							(%)	Low	High	(%)	Low	High	
Free Cyanide	SKA5039-JUN19	hð\ð	0.05	<0.05	ND	20	95	80	120	105	75	125	

Hexavalent Chromium by IC

Method: EPA218.6/EPA3060A | Internal ref.: ME-CA-IENVIIC-LAK-AN-008

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		Matrix S		f.
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chromium VI	DIO0224-JUN19	hð/ð	0.2	<0.2	ND	20	89	80	120	97	75	125

Mercury by CVAAS

Method: EPA 7471A/EPA 245 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		i.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury	EMS0084-JUN19	µg/g	0.05	<0.05	ND	20	100	80	120	97	70	130

Metals in aqueous samples - ICP-OES

Method: MOE 4696e01/EPA 6010 | Internal ref.: ME-CA-IENVISPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Du	plicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
SAR Calcium	ESG0044-JUN19	mg/L	0.09	<0.09	1	20	103	80	120	99	70	130
SAR Magnesium	ESG0044-JUN19	mg/L	0.02	<0.02	5	20	102	80	120	101	70	130
SAR Sodium	ESG0044-JUN19	mg/L	0.15	<0.15	2	20	98	80	120	104	70	130

Metals in Soil - Aqua-regia/ICP-MS

Method: EPA 3050/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover (%	•	Spike Recovery		ry Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Silver	EMS0084-JUN19	ug/g	0.05	<0.05	5	20	92	70	130	102	70	130
Arsenic	EMS0084-JUN19	µg/g	0.5	<0.5	5	20	101	70	130	91	70	130
Barium	EMS0084-JUN19	ug/g	0.1	<0.1	2	20	101	70	130	95	70	130
Beryllium	EMS0084-JUN19	µg/g	0.02	<0.02	6	20	101	70	130	103	70	130
Boron	EMS0084-JUN19	µg/g	1	<1	3	20	110	70	130	92	70	130
Cadmium	EMS0084-JUN19	µg/g	0.02	<0.02	ND	20	100	70	130	114	70	130
Cobalt	EMS0084-JUN19	µg/g	0.01	<0.01	ND	20	96	70	130	111	70	130
Chromium	EMS0084-JUN19	µg/g	0.5	<0.5	ND	20	97	70	130	111	70	130
Copper	EMS0084-JUN19	µg/g	0.1	<0.1	ND	20	96	70	130	104	70	130
Molybdenum	EMS0084-JUN19	µg/g	0.1	<0.1	ND	20	102	70	130	118	70	130
Nickel	EMS0084-JUN19	ug/g	0.5	<0.5	ND	20	99	70	130	113	70	130
Lead	EMS0084-JUN19	µg/g	0.1	<0.1	10	20	93	70	130	99	70	130
Antimony	EMS0084-JUN19	hð\ð	0.8	<0.8	ND	20	102	70	130	111	70	130
Selenium	EMS0084-JUN19	µg/g	0.7	<0.7	ND	20	99	70	130	113	70	130
Thallium	EMS0084-JUN19	hð\ð	0.02	<0.02	ND	20	93	70	130	99	70	130
Uranium	EMS0084-JUN19	µg/g	0.002	<0.002	6	20	100	70	130	105	70	130
Vanadium	EMS0084-JUN19	µg/g	3	<3	2	20	96	70	130	108	70	130
Zinc	EMS0084-JUN19	µg/g	0.7	<0.7	ND	20	99	70	130	103	70	130

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Ma	Matrix Spike / Ref.	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	ARD0052-JUN19	pH Units	0.05		1	20	100	80	120			

Water Soluble Boron

Method: O.Reg. 153/04 | Internal ref.: ME-CA-IENVI SPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	CS/Spike Blank		LCS/Spike Blank Matrix Spike		latrix Spike / Ref	i.
	Reference			Blank	RPD	AC	Spike		ery Limits	Spike		ry Limits	
						(%)	Recovery	C	%)	Recovery (%)	(9	%)	
							(%)	Low	High	(,	Low	High	
Water Soluble Boron	ESG0043-JUN19	hð\ð	0.5	<0.5	ND	20	103	80	120	106	70	130	

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- $\ensuremath{\textbf{NA}}$ The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

CA14439-JUN19 R

1-18-0615-2 Missisaga

Prepared for

Terraprobe

First Page

CLIENT DETAILS		LABORATORY DETAILS	
Client	Terraprobe	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	11 Indell Lane	Address	185 Concession St., Lakefield ON, K0L 2H0
	Brampton, Ontario		
	L6T 3Y3. Canada		
Contact	Mariam Al Gailani	Telephone	705-652-2143
Telephone	519-722-7134	Facsimile	705-652-6365
Facsimile	905-796-2250	Email	brad.moore@sgs.com
Email	malgailani@terraprobe.ca	SGS Reference	CA14439-JUN19
Project	1-18-0615-2 Missisaga	Received	06/10/2019
Order Number		Approved	06/14/2019
Samples	Soil (4)	Report Number	CA14439-JUN19 R
		Date Reported	06/14/2019

COMMENTS

Temperature of Sample upon Receipt: 8 degrees C Cooling Agent Present:Yes Custody Seal Present:No

Chain of Custody Number:007158

SIGNATORIES

SGS Canada Inc. 185 Concession St., Lakefield ON, K0L 2H0

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-4
Exceedance Summary	5
QC Summary	6-10
Legend	11
Annexes	12

CA14439-JUN19 R

Client: Terraprobe

Project: 1-18-0615-2 Missisaga

Project Manager: Mariam Al Gailani

Sample Number India Number N				_										
Semple Matrix Service COARSE - TABLE 1 - Residential Parklandtindustrial - UNDEFINED Sample Matrix Sample Data Soil Soil <td>PACKAGE: REG153 - Hydrides (SC</td> <td>OIL)</td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td>13</td> <td></td>	PACKAGE: REG153 - Hydrides (SC	OIL)			•				13					
Sample Date OS/06/2019 05/06/2019 05/06/2019 07/06/2019 07/06/2019 arameter Units RL L1 L2 Result Result Result Result rides unitrony µg/g 0.8 1.3 40 <0.8					•									
armenter Units RL L1 L2 Result Result Result rides ntimony µg/g 0.8 1.3 40 <0.8	I = REG153 / SOIL / COARSE - TABLE 1 - Residentia	al/Parkland/Industrial - UNDEFIN	ED		•		Soil	Soil	Soil					
Index Index <t< td=""><td>2 = REG153 / SOIL / COARSE - TABLE 3 - Industrial/</td><td>Commercial - UNDEFINED</td><td></td><td></td><td>Sample Date</td><td>05/06/2019</td><td>05/06/2019</td><td>07/06/2019</td><td>07/06/2019</td><td></td></t<>	2 = REG153 / SOIL / COARSE - TABLE 3 - Industrial/	Commercial - UNDEFINED			Sample Date	05/06/2019	05/06/2019	07/06/2019	07/06/2019					
nrtimony μg/g 0.8 1.3 40 <0.8 <0.8 <0.8 <0.8 <0.8 vrsenic μg/g 0.5 18 18 2.5 5.9 2.0 1.9 ielenium μg/g 0.7 1.5 5.5 <0.7	Parameter	Units	RL	L1	L2	Result	Result	Result	Result					
Market vig pg/g 0.6 1.6 <th< td=""><td>lydrides</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	lydrides													
Number No No <th< td=""><td>Antimony</td><td>hð\ð</td><td>0.8</td><td>1.3</td><td>40</td><td>< 0.8</td><td>< 0.8</td><td>< 0.8</td><td>< 0.8</td><td></td></th<>	Antimony	hð\ð	0.8	1.3	40	< 0.8	< 0.8	< 0.8	< 0.8					
CARACTER Prod Ort Ort <thort< th=""> Ort <thort< th=""> <thort<< td=""><td>Arsenic</td><td>hð/ð</td><td>0.5</td><td>18</td><td>18</td><td>2.5</td><td>5.9</td><td>2.0</td><td>1.9</td><td></td></thort<<></thort<></thort<>	Arsenic	hð/ð	0.5	18	18	2.5	5.9	2.0	1.9					
Sample Name BH33/AS1 BH18/AS1 Sample Name BH24/AS1 BH33/AS1 BH18/AS1 Sample Name BH24/AS1 Soil A for for for for for for for for for for	Selenium	hð\ð	0.7	1.5	5.5	< 0.7	< 0.7	< 0.7	< 0.7					
Sample Name BH24/AS1 BH33/AS1 BH15/AS1 BH18/AS1 Sample Matrix Soil Soil <th <="" colspan="4" td=""><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							_						
Sec 053 / SOIL / COARSE - TABLE 1 - Residential/Parkland/Industrial - UNDEFINEDSample Natrix Sample DateSoilSoilSoilSoilSoilreameterUnitsRLL1L2ResultResultResultResultResultatameterUnitsRLL2ResultResultResultResultResultatameter $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ toisture Content $\%$ $ 7.2$ 14.5 16.4 4.4 terylliumµg/g 0.02 2.5 8 0.24 0.83 0.28 0.15 terylliumµg/g 0.02 2.5 8 0.24 0.83 0.28 0.15 terylliumµg/g 0.02 1.2 1.9 0.06 0.05 0.12 0.06 terylliumµg/g 0.02 1.2 1.9 0.06 0.12 0.06 terylliumµg/g 0.02 1.2 1.9 0.06 0.12 0.06 terylliumµg/g 0.01 2.1 8.0 4.9 16 2.6 3.2 terylliumµg/g 0.11 2.2 2.30 16 3.9 3.1 18 terylliumµg/g 0.1 120 8.9 5.4 9.4 5.5 terylliumµg/g 0.1 2 40 0.3 0.2 0.3 0.2 terylliumµg/g 0.1 2.0 8.9 5.4 <td>ACKAGE: REG153 - Metals and Ir</td> <td>norganics (SOIL)</td> <td></td> <td></td> <td>•</td> <td>10</td> <td></td> <td></td> <td></td> <td></td>	ACKAGE: REG153 - Metals and Ir	norganics (SOIL)			•	10								
Sample Date 05/06/2019 05/06/2019 07/06/2019 07/06/2019 07/06/2019 Variantial Commercial - UNDEFINED Sample Date 05/06/2019 05/06/2019 07/06/2019 07/06/2019 07/06/2019 Variantial Commercial - UNDEFINED Result Result </td <td></td> <td></td> <td></td> <td></td> <td>•</td> <td>BH24/AS1</td> <td>BH33//AS1</td> <td>BH15/AS1</td> <td>BH18/AS1</td> <td></td>					•	BH24/AS1	BH33//AS1	BH15/AS1	BH18/AS1					
Note of the control of the	. = REG153 / SOIL / COARSE - TABLE 1 - Residentia	al/Parkland/Industrial - UNDEFIN	ED		•									
als and InorganicsMoisture Content $\%$ $ 7.2$ 14.5 16.4 4.4 Marium $\mu g/g$ 0.1 220 670 22 58 52 23 Jeryllium $\mu g/g$ 0.02 2.5 8 0.24 0.83 0.28 0.15 Joron $\mu g/g$ 0.02 1.2 1.9 0.06 0.05 0.12 0.06 Joron $\mu g/g$ 0.02 1.2 1.9 0.06 0.05 0.12 0.06 Chromium $\mu g/g$ 0.02 1.2 1.9 0.06 0.05 0.12 0.06 Chromium $\mu g/g$ 0.01 21 80 4.9 16 2.6 3.2 Cobalt $\mu g/g$ 0.1 92 230 16 39 13 18 Cobalt $\mu g/g$ 0.1 120 120 8.9 5.4 9.4 5.5 Molybdenum $\mu g/g$ 0.1 2 40 0.3 0.2 0.3 0.2 Molybdenum $\mu g/g$ 0.5 82 270 11 35 5.9 6.5 Molybdenum $\mu g/g$ 0.5 40 <0.5 0.7 0.9 0.9 0.9	2 = REG153 / SOIL / COARSE - TABLE 3 - Industrial/	Commercial - UNDEFINED			Sample Date	05/06/2019	05/06/2019	07/06/2019	07/06/2019					
Moisture Content % - 7.2 14.5 16.4 4.4 Moisture Content $\mu g/g$ 0.1 220 670 22 58 52 23 Barium $\mu g/g$ 0.02 2.5 8 0.24 0.83 0.28 0.15 Barium $\mu g/g$ 0.02 2.5 8 0.24 0.83 0.28 0.15 Barium $\mu g/g$ 0.02 1.2 1.9 0.06 0.05 0.12 0.06 Coron $\mu g/g$ 0.02 1.2 1.9 0.06 0.05 0.12 0.06 Coron $\mu g/g$ 0.01 21 80 4.9 16 2.6 3.2 Chromium $\mu g/g$ 0.01 21 80 4.9 16 2.6 3.2 Cobalt $\mu g/g$ 0.1 92 230 16 39 13 18 ead $\mu g/g$ 0.1 120 120 8.9 5.4 9.4 5.5 Molybenum $\mu g/g$ 0.5 8	Parameter	Units	RL	L1	L2	Result	Result	Result	Result					
Marian $\mu g/g$ 0.122067022585223beryllium $\mu g/g$ 0.022.580.240.830.280.15boron $\mu g/g$ 13612041344Cadmium $\mu g/g$ 0.021.21.90.060.050.120.06Chromium $\mu g/g$ 0.57016011279.25.9Cobalt $\mu g/g$ 0.121804.9162.63.2Copper $\mu g/g$ 0.11201208.95.49.45.5Molybdenum $\mu g/g$ 0.12400.30.20.30.2Lickel $\mu g/g$ 0.58227011355.96.5Bilver $\mu g/g$ 0.050.540<0.05	letals and Inorganics													
jeging ori loc ori loc ori beryllium µg/g 0.02 2.5 8 0.24 0.83 0.28 0.15 koron µg/g 1 36 120 4 13 4 4 cadmium µg/g 0.02 1.2 1.9 0.06 0.05 0.12 0.06 chromium µg/g 0.5 70 160 11 27 9.2 5.9 cobalt µg/g 0.1 21 80 4.9 16 2.6 3.2 copper µg/g 0.1 92 230 16 39 13 18 ead µg/g 0.1 120 120 8.9 5.4 9.4 5.5 folybdenum µg/g 0.5 82 270 11 35 5.9 6.5 lickel µg/g 0.5 82 270 11 35 5.9 6.5 <	Moisture Content	%	-			7.2	14.5	16.4	4.4					
pagepagereadpagereadreadBoron $\mu g/g$ 13612041344Cadmium $\mu g/g$ 0.021.21.90.060.050.120.06Chromium $\mu g/g$ 0.57016011279.25.9Cobalt $\mu g/g$ 0.0121804.9162.63.2Copper $\mu g/g$ 0.19223016391318ead $\mu g/g$ 0.11201208.95.49.45.5folybdenum $\mu g/g$ 0.12400.30.20.30.2lickel $\mu g/g$ 0.58227011355.96.5silver $\mu g/g$ 0.050.540<0.05	Barium	hð/ð	0.1	220	670	22	58	52	23					
cadmium $\mu g/g$ 0.021.21.90.060.050.120.06Chromium $\mu g/g$ 0.57016011279.25.9Cobalt $\mu g/g$ 0.0121804.9162.63.2Copper $\mu g/g$ 0.19223016391318ead $\mu g/g$ 0.11201208.95.49.45.5Allybdenum $\mu g/g$ 0.12400.30.20.30.2lickel $\mu g/g$ 0.58227011355.96.5Silver $\mu g/g$ 0.050.540<0.050.070.090.08	Beryllium	μg/g	0.02	2.5	8	0.24	0.83	0.28	0.15					
pg/g 0.02 1.12 1.0 Chromium $\mu g/g$ 0.5 70 160 11 27 9.2 5.9 Scholl $\mu g/g$ 0.01 21 80 4.9 16 2.6 3.2 Scholl $\mu g/g$ 0.1 92 230 16 39 13 18 Scopper $\mu g/g$ 0.1 120 120 8.9 5.4 9.4 5.5 Adolybdenum $\mu g/g$ 0.1 2 40 0.3 0.2 0.3 0.2 lickel $\mu g/g$ 0.5 82 270 11 35 5.9 6.5 silver $\mu g/g$ 0.05 40 <0.05 0.07 0.09 0.08	Boron	hð/ð	1	36	120	4	13	4	4					
And Mathematical $\mu g/g$ 0.0121804.9162.63.2Sobalt $\mu g/g$ 0.19223016391318ead $\mu g/g$ 0.11201208.95.49.45.5Aolybdenum $\mu g/g$ 0.12400.30.20.30.2lickel $\mu g/g$ 0.58227011355.96.5silver $\mu g/g$ 0.050.540<0.05	Cadmium	µg/g	0.02	1.2	1.9	0.06	0.05	0.12	0.06					
pg/g 0.1 92 230 16 39 13 18 copper $\mu g/g$ 0.1 92 230 16 39 13 18 ead $\mu g/g$ 0.1 120 120 8.9 5.4 9.4 5.5 Molybdenum $\mu g/g$ 0.1 2 40 0.3 0.2 0.3 0.2 lickel $\mu g/g$ 0.5 82 270 11 35 5.9 6.5 silver $\mu g/g$ 0.05 0.5 40 <0.05 0.07 0.09 0.08	Chromium	µg/g	0.5	70	160	11	27	9.2	5.9					
pg/g 0.1 120 120 8.9 5.4 9.4 5.5 Aolybdenum µg/g 0.1 2 40 0.3 0.2 0.3 0.2 lickel µg/g 0.5 82 270 11 35 5.9 6.5 silver µg/g 0.05 0.5 40 <0.05	Cobalt	µg/g	0.01	21	80	4.9	16	2.6	3.2					
Molybdenum µg/g 0.1 2 40 0.3 0.2 0.3 0.2 lickel µg/g 0.5 82 270 11 35 5.9 6.5 silver µg/g 0.05 0.5 40 < 0.05 0.07 0.09 0.08	Copper	µg/g	0.1	92	230	16	39	13	18					
pg/g 0.1 2 10 lickel µg/g 0.5 82 270 11 35 5.9 6.5 silver µg/g 0.05 0.5 40 < 0.05 0.07 0.09 0.08	Lead	μg/g	0.1	120	120	8.9	5.4	9.4	5.5					
μg/g 0.5 82 270 11 35 5.9 6.5 silver μg/g 0.05 0.5 40 < 0.05	Molybdenum	hð\ð	0.1	2	40	0.3	0.2	0.3	0.2					
	Nickel		0.5	82	270	11	35	5.9	6.5					
	Silver	µg/g	0.05	0.5	40	< 0.05	0.07	0.09	0.08					
	Thallium	hð ð	0.02	1	3.3	0.08	0.14	0.05	0.07					

CA14439-JUN19 R

Client: Terraprobe

Project: 1-18-0615-2 Missisaga

Project Manager: Mariam Al Gailani

PACKAGE: REG153 - Metals and Inor	rganics (SOIL)		Sar	nple Number	10	11	12	13
			s	ample Name	BH24/AS1	BH33//AS1	BH15/AS1	BH18/AS1
L1 = REG153 / SOIL / COARSE - TABLE 1 - Residential/Pa	arkland/Industrial - UNDEFIN	NED	s	ample Matrix	Soil	Soil	Soil	Soil
L2 = REG153 / SOIL / COARSE - TABLE 3 - Industrial/Com	nmercial - UNDEFINED			Sample Date	05/06/2019	05/06/2019	07/06/2019	07/06/2019
Parameter	Units	RL	L1	L2	Result	Result	Result	Result
Metals and Inorganics (continued)								
Uranium	hð\ð	0.002	2.5	33	0.30	1.1	0.66	0.27
Vanadium	hð\ð	3	86	86	15	33	14	11
Zinc	hð\ð	0.7	290	340	36	73	23	23
Water Soluble Boron	hð\ð	0.5		2	< 0.5	< 0.5	< 0.5	< 0.5
L1 = REG153 / SOIL / COARSE - TABLE 1 - Residential/Pa	arkland/Industrial - UNDEFIN	NED		ample Name ample Matrix	BH24/AS1 Soil	BH33//AS1 Soil	BH15/AS1 Soil	BH18/AS1 Soil
L2 = REG153 / SOIL / COARSE - TABLE 3 - Industrial/Com		NED		Sample Date	05/06/2019	05/06/2019	07/06/2019	07/06/2019
Parameter	Units	RL	L1	L2	Result	Result	Result	Result
Other (ORP)								
Mercury	hð\ð	0.05	0.27	3.9	< 0.05	< 0.05	0.05	< 0.05
Sodium Adsorption Ratio		0.2	2.4	12	15.0	21.1	25.3	13.7
SAR Calcium	mg/L	0.09			7.9	48.4	25.1	5.8
SAR Magnesium	mg/L	0.02			0.29	43.4	7.0	1.8
SAR Sodium	mg/L	0.15			156	851	755	137
Conductivity	mS/cm	0.002	0.57	1.4	0.93	4.2	3.3	0.83
рН								
	pH Units	0.05			10.93	8.13	7.92	9.92
Chromium VI	pH Units µg/g	0.05	0.66	8	10.93 < 0.2	8.13 < 0.2	7.92 < 0.2	9.92 < 0.2

EXCEEDANCE SUMMARY

				REG153 / SOIL / COARSE - TABLE 1 - Residential/Parklan d/Industrial - UNDEFINED	REG153 / SOIL / COARSE - TABLE 3 - Industrial/Commer cial - UNDEFINED
Parameter	Method	Units	Result	L1	L2
BH24/AS1					
Conductivity	EPA 6010/SM 2510	hð\ð	0.93	0.57	
Sodium Adsorption Ratio	MOE 4696e01/EPA 6010	hð\ð	15.0	2.4	12
BH33//AS1					
Conductivity	EPA 6010/SM 2510	hā\a	4.2	0.57	1.4
Sodium Adsorption Ratio	MOE 4696e01/EPA 6010	hð\ð	21.1	2.4	12
BH15/AS1					
Conductivity	EPA 6010/SM 2510	hð\ð	3.3	0.57	1.4
Sodium Adsorption Ratio	MOE 4696e01/EPA 6010	hð\ð	25.3	2.4	12
BH18/AS1					
Conductivity	EPA 6010/SM 2510	hð\ð	0.83	0.57	
Sodium Adsorption Ratio	MOE 4696e01/EPA 6010	hð\ð	13.7	2.4	12

Conductivity

Method: EPA 6010/SM 2510 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover (۹	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0200-JUN19	mS/cm	0.002	<0.002	0	10	99	90	110	NA		

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	latrix Spike / Ref	i.
	Reference			Blank	RPD	AC	Spike		ery Limits	Spike		ery Limits
						(%)	Recovery	(%)	Recovery	(9	6)
							(%)	Low	High	(%)	Low	High
Free Cyanide	SKA5027-JUN19	hð\ð	0.05	<0.05	ND	20	100	80	120	108	75	125

Hexavalent Chromium by IC

Method: EPA218.6/EPA3060A | Internal ref.: ME-CA-IENVIIC-LAK-AN-008

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chromium VI	DIO0180-JUN19	µg/g	0.2	<0.2	ND	20	110	80	120	94	75	125

Mercury by CVAAS

Method: EPA 7471A/EPA 245 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Re	яf.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits (%)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury	EMS0061-JUN19	hā\ð	0.05	<0.05	13	20	99	80	120	99	70	130

Metals in aqueous samples - ICP-OES

Method: MOE 4696e01/EPA 6010 | Internal ref.: ME-CA-IENVISPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	atrix Spike / Ref	i. 📄
	Reference			Blank	RPD	AC	Spike	Recove (%	•	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
SAR Calcium	ESG0034-JUN19	mg/L	0.09	<0.09	0	20	99	80	120	104	70	130
SAR Magnesium	ESG0034-JUN19	mg/L	0.02	<0.02	1	20	99	80	120	107	70	130
SAR Sodium	ESG0034-JUN19	mg/L	0.15	<0.15	ND	20	100	80	120	110	70	130

Metals in Soil - Aqua-regia/ICP-MS

Method: EPA 3050/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	trix Spike / Re	<i>I</i> .
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover (%	-	Spike Recovery		ory Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Silver	EMS0061-JUN19	ug/g	0.05	<0.05	ND	20	98	70	130	102	70	130
Arsenic	EMS0061-JUN19	µg/g	0.5	<0.5	1	20	100	70	130	100	70	130
Barium	EMS0061-JUN19	ug/g	0.1	<0.1	1	20	107	70	130	104	70	130
Beryllium	EMS0061-JUN19	µg/g	0.02	<0.02	2	20	99	70	130	98	70	130
Boron	EMS0061-JUN19	hð/ð	1	<1	3	20	107	70	130	105	70	130
Cadmium	EMS0061-JUN19	µg/g	0.02	<0.02	3	20	99	70	130	107	70	130
Cobalt	EMS0061-JUN19	µg/g	0.01	<0.01	4	20	103	70	130	112	70	130
Chromium	EMS0061-JUN19	µg/g	0.5	<0.5	6	20	107	70	130	118	70	130
Copper	EMS0061-JUN19	µg/g	0.1	<0.1	4	20	102	70	130	106	70	130
Molybdenum	EMS0061-JUN19	µg/g	0.1	<0.1	1	20	104	70	130	115	70	130
Nickel	EMS0061-JUN19	ug/g	0.5	<0.5	4	20	104	70	130	113	70	130
Lead	EMS0061-JUN19	ug/g	0.1	<0.1	3	20	103	70	130	108	70	130
Antimony	EMS0061-JUN19	µg/g	0.8	<0.8	ND	20	105	70	130	117	70	130
Selenium	EMS0061-JUN19	µg/g	0.7	<0.7	ND	20	100	70	130	102	70	130
Thallium	EMS0061-JUN19	µg/g	0.02	<0.02	11	20	101	70	130	107	70	130
Uranium	EMS0061-JUN19	µg/g	0.002	<0.002	0	20	104	70	130	105	70	130
Vanadium	EMS0061-JUN19	µg/g	3	<3	4	20	105	70	130	112	70	130
Zinc	EMS0061-JUN19	µg/g	0.7	<0.7	5	20	103	70	130	109	70	130

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Ma	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recove	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	ARD0039-JUN19	pH Units	0.05		1	20	100	80	120			

Water Soluble Boron

Method: O.Reg. 153/04 | Internal ref.: ME-CA-IENVI SPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	latrix Spike / Ref	r.
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ery Limits
						(%)				(%)		%)
							(%)	Low	High		Low	High
Water Soluble Boron	ESG0037-JUN19	µg/g	0.5	<0.5	ND	20	100	80	120	105	70	130

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- $\ensuremath{\textbf{NA}}$ The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

CA14604-JUN19 R

1-18-0615-2

Prepared for

Terraprobe

First Page

CLIENT DETAILS		LABORATORY DETAILS	
Client	Terraprobe	Project Specialist	Rob Irwin B.Sc., C.Chem
		Laboratory	SGS Canada Inc.
Address	11 Indell Lane	Address	185 Concession St., Lakefield ON, K0L 2H0
	Brampton, Ontario		
	L6T 3Y3. Canada		
Contact	Mariam Al Gailani	Telephone	705-652-2361
Telephone	519-722-7134	Facsimile	705-652-6365
Facsimile	905-796-2250	Email	rob.irwin@sgs.com
Email	malgailani@terraprobe.ca	SGS Reference	CA14604-JUN19
Project	1-18-0615-2	Received	06/14/2019
Order Number		Approved	06/20/2019
Samples	Soil (2)	Report Number	CA14604-JUN19 R
		Date Reported	06/20/2019

COMMENTS

CCME Method Compliance: Analyses were conducted using analytical procedures that comply with the Reference Method for the CWS for Petroleum Hydrocarbons in Soil and have been validated for use at the SGS laboratory, Lakefield, ON site.

Quality Compliance: Instrument performance / calibration quality criteria were met and extraction and analysis limits for holding times were met.

nC6 and nC10 response factors within 30% of response factor for toluene: YES

nC10, nC16 and nC34 response factors within 10% of the average response for the three compounds: YES

C50 response factors within 70% of nC10 + nC16 + nC34 average: YES

Linearity is within 15%: YES

F4G - gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons. The results for F4 and F4G are both reported and the greater of the two values is to be used in application to the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

Temperature of Sample upon Receipt: 8 degrees C Cooling Agent Present:Yes Custody Seal Present:No

Chain of Custody Number:007160

SIGNATORIES

Rob Irwin B.Sc., C.Chem Ribert (

TABLE OF CONTENTS

First Page	1
Index	2
Results	
Exceedance Summary	
QC Summary	10-17
Legend	
Annexes	19

CA14604-JUN19 R

Client: Terraprobe

Project: 1-18-0615-2

Project Manager: Mariam Al Gailani

			0	anla Numb	11	
PACKAGE: REG153 - BTEX (SOIL)				nple Number	11	
				ample Name	BH62/AS2	
L1 = REG153 / SOIL / COARSE - TABLE 1 - Residential/Pa		ED		ample Matrix	Soil	
L2 = REG153 / SOIL / COARSE - TABLE 3 - Industrial/Con				Sample Date	13/06/2019	
Parameter	Units	RL	L1	L2	Result	
BTEX						
Benzene	µg/g	0.02	0.02	0.32	< 0.02	
Ethylbenzene	µg/g	0.05	0.05	9.5	< 0.05	
Toluene	hð\ð	0.05	0.2	68	< 0.05	
Xylene (total)	hð\ð	0.05	0.05	26	< 0.05	
m/p-xylene	µg/g	0.05			< 0.05	
o-xylene	µg/g	0.05			< 0.05	
PACKAGE: REG153 - Hydrides (SOIL	_)		San	nple Number	10	11
			S	ample Name	BH53/AS1	BH62/AS2
L1 = REG153 / SOIL / COARSE - TABLE 1 - Residential/Pa	arkland/Industrial - UNDEFIN	ED	S	ample Matrix	Soil	Soil
L2 = REG153 / SOIL / COARSE - TABLE 3 - Industrial/Con	mmercial - UNDEFINED		:	Sample Date	13/06/2019	13/06/2019
Parameter	Units	RL	L1	L2	Result	Result
Hydrides						
Antimony	μg/g	0.8	1.3	40	< 0.8	< 0.8
Arsenic	hð\ð	0.5	18	18	3.0	4.6
Selenium	hð\ð	0.7	1.5	5.5	< 0.7	< 0.7

CA14604-JUN19 R

Client: Terraprobe

Project: 1-18-0615-2

Project Manager: Mariam Al Gailani

			-		10	
PACKAGE: REG153 - Metals and Ino	rganics (SOIL)		Sar	nple Number	10	11
			S	ample Name	BH53/AS1	BH62/AS2
1 = REG153 / SOIL / COARSE - TABLE 1 - Residential/Pa	arkland/Industrial - UNDEFIN	IED	S	ample Matrix	Soil	Soil
.2 = REG153 / SOIL / COARSE - TABLE 3 - Industrial/Com	mmercial - UNDEFINED		:	Sample Date	13/06/2019	13/06/2019
Parameter	Units	RL	L1	L2	Result	Result
Metals and Inorganics						
Moisture Content	%	-			5.2	9.8
Barium	hð\ð	0.1	220	670	39	67
Beryllium	µg/g	0.02	2.5	8	0.16	0.51
Boron	µg/g	1	36	120	4	8
Cadmium	µg/g	0.02	1.2	1.9	0.07	0.09
Chromium	hð\ð	0.5	70	160	6.4	18
Cobalt	µg/g	0.01	21	80	4.1	12
Copper	µg/g	0.1	92	230	20	32
Lead	hð\ð	0.1	120	120	6.0	13
Molybdenum	µg/g	0.1	2	40	0.3	0.3
Nickel	hð\ð	0.5	82	270	8.3	25
Silver	µg/g	0.05	0.5	40	0.06	0.15
Thallium	hð\ð	0.02	1	3.3	0.07	0.14
Uranium	hð\ð	0.002	2.5	33	0.29	0.52
Vanadium	hð\ð	3	86	86	13	24
Zinc	hð\ð	0.7	290	340	28	59
Water Soluble Boron	hð\ð	0.5		2	< 0.5	

CA14604-JUN19 R

Client: Terraprobe

Project: 1-18-0615-2

Project Manager: Mariam Al Gailani

PACKAGE: REG153 - Other (ORP) (SC	DIL)		San	nple Number	10
			S	ample Name	BH53/AS1
L1 = REG153 / SOIL / COARSE - TABLE 1 - Residential/Park	land/Industrial - UNDEFI	NED	S	ample Matrix	Soil
2 = REG153 / SOIL / COARSE - TABLE 3 - Industrial/Commercial - UNDEFINED		8	Sample Date	13/06/2019	
Parameter	Units	RL	L1	L2	Result
Other (ORP)					
Mercury	hð/ð	0.05	0.27	3.9	< 0.05
Sodium Adsorption Ratio		0.2	2.4	12	9.0
SAR Calcium	mg/L	0.09	2.1	12	8.2
SAR Magnesium	mg/L	0.02			5.2
SAR Sodium	mg/L	0.15			147
Conductivity	mS/cm	0.002	0.57	1.4	0.89
рН	pH Units	0.05			8.03
Chromium VI	µg/g	0.2	0.66	8	< 0.2
Free Cyanide	hð\ð	0.05			< 0.05

CA14604-JUN19 R

Client: Terraprobe

Project: 1-18-0615-2

Project Manager: Mariam Al Gailani

PACKAGE: REG153 - PHCs (SOIL)			Sar	nple Number	11
			S	ample Name	BH62/AS2
L1 = REG153 / SOIL / COARSE - TABLE 1 - Residential/Parkland/I	Industrial - UNDEFI	INED	S	ample Matrix	Soil
L2 = REG153 / SOIL / COARSE - TABLE 3 - Industrial/Commercial	I - UNDEFINED		:	Sample Date	13/06/2019
Parameter	Units	RL	L1	L2	Result
PHCs					
F1 (C6-C10)	µg/g	10	25	55	< 10
F1-BTEX (C6-C10)		10	20		< 10
	µg/g		10		< 10
F2 (C10-C16)	µg/g	10	10	230	
F3 (C16-C34)	µg/g	50	240	1700	< 50
F4 (C34-C50)	µg/g	50	120	3300	< 50
Chromatogram returned to baseline at nC50	Yes / No	-			YES
PACKAGE: REG153 - THMs (VOC) (SOIL))		Sar	nple Number	11
			S	ample Name	BH62/AS2
L1 = REG153 / SOIL / COARSE - TABLE 1 - Residential/Parkland/I	Industrial - UNDEFI	INED	S	ample Matrix	Soil
L2 = REG153 / SOIL / COARSE - TABLE 3 - Industrial/Commercial	I - UNDEFINED		:	Sample Date	13/06/2019
Parameter	Units	RL	L1	L2	Result
THMs (VOC)					
Bromodichloromethane	µg/g	0.05	0.05	18	< 0.05
Bromodichiloromentane					< 0.05
	µg/g	0.05	0.05	0.61	
Dibromochloromethane	µg/g	0.05	0.05	13	< 0.05

CA14604-JUN19 R

Client: Terraprobe

Project: 1-18-0615-2

Project Manager: Mariam Al Gailani

PACKAGE: REG153 - VOC Surrogates	(SOIL)		San	nple Number	11
			S	ample Name	BH62/AS2
L1 = REG153 / SOIL / COARSE - TABLE 1 - Residential/Park	kland/Industrial - UNDEFIN	ED	S	ample Matrix	Soil
L2 = REG153 / SOIL / COARSE - TABLE 3 - Industrial/Comm	nercial - UNDEFINED		;	Sample Date	13/06/2019
Parameter	Units	RL	L1	L2	Result
VOC Surrogates					
Surr 1.2-Dichloroethane-d4	Surr Rec %	_			102
Surr 4-Bromofluorobenzene	Surr Rec %	_			92
Surr 2-Bromo-1-Chloropropane	Surr Rec %				90
	Gui Rec //				
PACKAGE: REG153 - VOCs (SOIL)			San	nple Number	11
			S	ample Name	BH62/AS2
L1 = REG153 / SOIL / COARSE - TABLE 1 - Residential/Park	kland/Industrial - UNDEFIN	ED	S	ample Matrix	Soil
L2 = REG153 / SOIL / COARSE - TABLE 3 - Industrial/Comm			;	Sample Date	13/06/2019
Parameter	Units	RL	L1	L2	Result
VOCs					
					- 0.5
Acetone	µg/g	0.5	0.5	16	< 0.5
Bromomethane	µg/g	0.05	0.05	0.05	< 0.05
1 .	100				
Carbon tetrachloride	hâ/ð	0.05	0.05	0.21	< 0.05
Carbon tetrachloride Chlorobenzene		0.05 0.05		0.21	< 0.05 < 0.05
	µg/g		0.05		
Chlorobenzene	hð\ð hð\ð	0.05	0.05	2.4	< 0.05
Chlorobenzene Chloroform	hð\ð hð\ð hð\ð	0.05 0.05	0.05 0.05 0.05	2.4 0.47	< 0.05 < 0.05
Chlorobenzene Chloroform 1,2-Dichlorobenzene	hð\ð hð\ð hð\ð	0.05 0.05 0.05	0.05 0.05 0.05 0.05	2.4 0.47 6.8	< 0.05 < 0.05 < 0.05
Chlorobenzene Chloroform 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	hð\a hð\a hð\a hð\a hð\a	0.05 0.05 0.05 0.05	0.05 0.05 0.05 0.05 0.05 0.05	2.4 0.47 6.8 9.6 0.2	< 0.05 < 0.05 < 0.05 < 0.05
Chlorobenzene Chloroform 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane	hð\ð hð\ð hð\ð hð\ð hð\ð hð\ð	0.05 0.05 0.05 0.05 0.05 0.05	0.05 0.05 0.05 0.05 0.05 0.05 0.05	2.4 0.47 6.8 9.6 0.2 16	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Chlorobenzene Chloroform 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane	hð\a hð\a hð\a hð\a hð\a hð\a hð\a hð\a	0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	2.4 0.47 6.8 9.6 0.2 16 17	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Chlorobenzene Chloroform 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane	hð\a hð\a hð\a hð\a hð\a hð\a hð\a hð\a	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	2.4 0.47 6.8 9.6 0.2 16 17 0.05	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
Chlorobenzene Chloroform 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane	hð\a hð\a hð\a hð\a hð\a hð\a hð\a hð\a	0.05 0.05 0.05 0.05 0.05 0.05 0.05	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	2.4 0.47 6.8 9.6 0.2 16 17	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05

CA14604-JUN19 R

Client: Terraprobe

Project: 1-18-0615-2

Project Manager: Mariam Al Gailani

			Sar	nple Number	11
PACKAGE: REG153 - VOCs (SOIL)				•	BH62/AS2
				ample Name ample Matrix	Soil
1 = REG153 / SOIL / COARSE - TABLE 1 - Residential/Parkla		NED		Sample Date	13/06/2019
2 = REG153 / SOIL / COARSE - TABLE 3 - Industrial/Comme				-	
Parameter	Units	RL	L1	L2	Result
VOCs (continued)			1		
cis-1,2-Dichloroethylene	µg/g	0.05	0.05	55	< 0.05
1,2-Dichloropropane	µg/g	0.05	0.05	0.16	< 0.05
cis-1,3-dichloropropene	µg/g	0.03			< 0.03
trans-1,3-dichloropropene	µg/g	0.03			< 0.03
1,3-dichloropropene (total)	µg/g	0.05	0.05	0.18	< 0.05
Ethylenedibromide	µg/g	0.05	0.05	0.05	< 0.05
n-Hexane	µg/g	0.05	0.05	46	0.05
Methyl ethyl ketone	µg/g	0.5	0.5	70	< 0.5
Methyl isobutyl ketone	hð/ð	0.5	0.5	31	< 0.5
Methyl-t-butyl Ether	µg/g	0.05	0.05	11	< 0.05
Methylene Chloride	hð\ð	0.05	0.05	1.6	< 0.05
Styrene	hð\ð	0.05	0.05	34	< 0.05
Tetrachloroethylene	hð/ð	0.05	0.05	4.5	< 0.05
1,1,1,2-Tetrachloroethane	hð/ð	0.05	0.05	0.087	< 0.05
1,1,2,2-Tetrachloroethane	μg/g	0.05	0.05	0.05	< 0.05
1,1,1-Trichloroethane	μg/g	0.05	0.05	6.1	< 0.05
1,1,2-Trichloroethane	μg/g	0.05	0.05	0.05	< 0.05
Trichloroethylene	μg/g	0.05	0.05	0.91	0.24
Trichlorofluoromethane	μg/g	0.05	0.05	4	< 0.05
					< 0.02
Vinyl Chloride	µg/g	0.02	0.02	0.032	< 0.02

EXCEEDANCE SUMMARY

				REG153 / SOIL /	REG153 / SOIL /
				COARSE - TABLE	COARSE - TABLE
				1 -	3 -
				Residential/Parklan	Industrial/Commer
				d/Industrial -	cial - UNDEFINED
				UNDEFINED	
Parameter	Method	Units	Result	L1	L2
3H53/AS1					
Conductivity	EPA 6010/SM 2510	hð\ð	0.89	0.57	
Sodium Adsorption Ratio	MOE 4696e01/EPA 6010	hð\ð	9.0	2.4	
3H62/AS2					
Trichloroethylene	EPA 5035A/5030B/8260C	µg/g	0.24	0.05	

Conductivity

Method: EPA 6010/SM 2510 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recove	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0277-JUN19	mS/cm	0.002	<0.002	0	10	99	90	110	NA		

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		ıf.
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Free Cyanide	SKA5050-JUN19	hð/ð	0.05	<0.05	ND	20	99	80	120	90	75	125

Hexavalent Chromium by IC

Method: EPA218.6/EPA3060A | Internal ref.: ME-CA-IENVIIC-LAK-AN-008

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chromium VI	DIO0287-JUN19	hð\ð	0.2	<0.2	ND	20	111	80	120	108	75	125

Mercury by CVAAS

Method: EPA 7471A/EPA 245 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury	EMS0101-JUN19	hð\ð	0.05	<0.05	ND	20	100	80	120	98	70	130

Metals in aqueous samples - ICP-OES

Method: MOE 4696e01/EPA 6010 | Internal ref.: ME-CA-IENVISPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recove (%	•	Spike Recovery	Recover (9	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
SAR Calcium	ESG0047-JUN19	mg/L	0.09	<0.09	1	20	98	80	120	101	70	130
SAR Magnesium	ESG0047-JUN19	mg/L	0.02	<0.02	ND	20	97	80	120	103	70	130
SAR Sodium	ESG0047-JUN19	mg/L	0.15	<0.15	ND	20	96	80	120	100	70	130

Metals in Soil - Aqua-regia/ICP-MS

Method: EPA 3050/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	icate	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery	Recover (9	ry Limits 6)
								Low	High	(%)	Low	High
Silver	EMS0101-JUN19	ug/g	0.05	<0.05	ND	20	94	70	130	98	70	130
Arsenic	EMS0101-JUN19	µg/g	0.5	<0.5	2	20	100	70	130	108	70	130
Barium	EMS0101-JUN19	ug/g	0.1	<0.1	7	20	103	70	130	98	70	130
Beryllium	EMS0101-JUN19	µg/g	0.02	<0.02	0	20	96	70	130	93	70	130
Boron	EMS0101-JUN19	µg/g	1	<1	ND	20	104	70	130	97	70	130
Cadmium	EMS0101-JUN19	µg/g	0.02	<0.02	6	20	99	70	130	109	70	130
Cobalt	EMS0101-JUN19	µg/g	0.01	<0.01	0	20	102	70	130	111	70	130
Chromium	EMS0101-JUN19	µg/g	0.5	<0.5	3	20	101	70	130	111	70	130
Copper	EMS0101-JUN19	µg/g	0.1	<0.1	2	20	103	70	130	106	70	130
Molybdenum	EMS0101-JUN19	µg/g	0.1	<0.1	1	20	94	70	130	107	70	130
Nickel	EMS0101-JUN19	ug/g	0.5	<0.5	2	20	103	70	130	111	70	130
Lead	EMS0101-JUN19	ug/g	0.1	<0.1	6	20	99	70	130	99	70	130
Antimony	EMS0101-JUN19	µg/g	0.8	<0.8	ND	20	99	70	130	113	70	130
Selenium	EMS0101-JUN19	µg/g	0.7	<0.7	ND	20	98	70	130	89	70	130
Thallium	EMS0101-JUN19	µg/g	0.02	<0.02	ND	20	99	70	130	105	70	130
Uranium	EMS0101-JUN19	µg/g	0.002	<0.002	6	20	95	70	130	94	70	130
Vanadium	EMS0101-JUN19	µg/g	3	<3	1	20	105	70	130	114	70	130
Zinc	EMS0101-JUN19	hð\ð	0.7	<0.7	2	20	105	70	130	111	70	130

Petroleum Hydrocarbons (F1)

Method: CCME Tier 1 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-010

Parameter	QC batch	Units	RL	RL Method	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike		əry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
F1 (C6-C10)	GCM0310-JUN19	hð\ð	10	<10	ND	30	106	80	120	108	60	140

Petroleum Hydrocarbons (F2-F4)

Method: CCME Tier 1 | Internal ref.: ME-CA-IENVIGC-LAK-AN-010

Parameter	QC batch		RL	Method	Duplicate		LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery	Recover (%	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
F2 (C10-C16)	GCM0316-JUN19	hð\ð	10	<10	ND	30	102	80	120	107	60	140
F3 (C16-C34)	GCM0316-JUN19	µg/g	50	<50	ND	30	102	80	120	107	60	140
F4 (C34-C50)	GCM0316-JUN19	µg/g	50	<50	ND	30	102	80	120	107	60	140

pН

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-001

Parameter	QC batch Unit Reference	Units	RL	Method Blank	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
					RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	ARD0058-JUN19	pH Units	0.05		0	20	100	80	120			

Volatile Organics

Method: EPA 5035A/5030B/8260C | Internal ref.: ME-CA-IENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	LCS/Spike Blank			atrix Spike / Ref	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery		ery Limits %)
								Low	High	(%)	Low	High
1,1,1,2-Tetrachloroethane	GCM0309-JUN19	hð\ð	0.05	< 0.05	ND	50	92	60	130	88	50	140
I,1,1-Trichloroethane	GCM0309-JUN19	µg/g	0.05	< 0.05	ND	50	85	60	130	81	50	140
1,1,2,2-Tetrachloroethane	GCM0309-JUN19	µg/g	0.05	< 0.05	ND	50	93	60	130	84	50	140
I,1,2-Trichloroethane	GCM0309-JUN19	µg/g	0.05	< 0.05	ND	50	91	60	130	86	50	140
I,1-Dichloroethane	GCM0309-JUN19	µg/g	0.05	< 0.05	ND	50	83	60	130	78	50	140
I,1-Dichloroethylene	GCM0309-JUN19	µg/g	0.05	< 0.05	ND	50	86	60	130	81	50	140
1,2-Dichlorobenzene	GCM0309-JUN19	µg/g	0.05	< 0.05	ND	50	92	60	130	87	50	140
1,2-Dichloroethane	GCM0309-JUN19	µg/g	0.05	< 0.05	ND	50	89	60	130	85	50	140
1,2-Dichloropropane	GCM0309-JUN19	µg/g	0.05	< 0.05	ND	50	90	60	130	85	50	140
1,3-Dichlorobenzene	GCM0309-JUN19	µg/g	0.05	< 0.05	ND	50	92	60	130	88	50	140
1,4-Dichlorobenzene	GCM0309-JUN19	µg/g	0.05	< 0.05	ND	50	92	60	130	87	50	140
Acetone	GCM0309-JUN19	µg/g	0.5	< 0.5	ND	50	91	50	140	80	50	140
Benzene	GCM0309-JUN19	µg/g	0.02	< 0.02	ND	50	89	60	130	86	50	140
Bromodichloromethane	GCM0309-JUN19	µg/g	0.05	< 0.05	ND	50	90	60	130	86	50	140
Bromoform	GCM0309-JUN19	µg/g	0.05	< 0.05	ND	50	90	60	130	85	50	140
Bromomethane	GCM0309-JUN19	hð/ð	0.05	< 0.05	ND	50	77	50	140	76	50	140
Carbon tetrachloride	GCM0309-JUN19	hð/ð	0.05	< 0.05	ND	50	88	60	130	85	50	140
Chlorobenzene	GCM0309-JUN19	hð/ð	0.05	< 0.05	ND	50	90	60	130	87	50	140
Chloroform	GCM0309-JUN19	hð/ð	0.05	< 0.05	ND	50	90	60	130	87	50	140
sis-1,2-Dichloroethylene	GCM0309-JUN19	µg/g	0.05	< 0.05	ND	50	89	60	130	85	50	140

Volatile Organics (continued)

Method: EPA 5035A/5030B/8260C | Internal ref.: ME-CA-IENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover		Spike Recovery	Recove	ry Limits %)	
							(%)	Low	High	(%)	Low	High	
cis-1,3-dichloropropene	GCM0309-JUN19	μg/g	0.03	< 0.03	ND	50	91	60	130	81	50	140	
Dibromochloromethane	GCM0309-JUN19	µg/g	0.05	< 0.05	ND	50	91	60	130	87	50	140	
Dichlorodifluoromethane	GCM0309-JUN19	µg/g	0.05	< 0.05	ND	50	66	50	140	61	50	140	
Ethylbenzene	GCM0309-JUN19	µg/g	0.05	< 0.05	ND	50	90	60	130	87	50	140	
Ethylenedibromide	GCM0309-JUN19	µg/g	0.05	< 0.05	ND	50	92	60	130	87	50	140	
n-Hexane	GCM0309-JUN19	µg/g	0.05	< 0.05	ND	50	91	60	130	77	50	140	
m/p-xylene	GCM0309-JUN19	µg/g	0.05	< 0.05	ND	50	90	60	130	86	50	140	
Methyl ethyl ketone	GCM0309-JUN19	µg/g	0.5	< 0.5	ND	50	94	50	140	82	50	140	
Methyl isobutyl ketone	GCM0309-JUN19	µg/g	0.5	< 0.5	ND	50	96	50	140	88	50	140	
Methyl-t-butyl Ether	GCM0309-JUN19	µg/g	0.05	< 0.05	ND	50	94	60	130	90	50	140	
Methylene Chloride	GCM0309-JUN19	µg/g	0.05	< 0.05	ND	50	87	60	130	83	50	140	
o-xylene	GCM0309-JUN19	µg/g	0.05	< 0.05	ND	50	91	60	130	88	50	140	
Styrene	GCM0309-JUN19	µg/g	0.05	< 0.05	ND	50	91	60	130	88	50	140	
Tetrachloroethylene	GCM0309-JUN19	µg/g	0.05	< 0.05	ND	50	89	60	130	83	50	140	
Toluene	GCM0309-JUN19	µg/g	0.05	< 0.05	ND	50	90	60	130	87	50	140	
trans-1,2-Dichloroethylene	GCM0309-JUN19	µg/g	0.05	< 0.05	ND	50	83	60	130	79	50	140	
trans-1,3-dichloropropene	GCM0309-JUN19	µg/g	0.03	< 0.03	ND	50	90	60	130	81	50	140	
Trichloroethylene	GCM0309-JUN19	µg/g	0.05	< 0.05	ND	50	89	60	130	86	50	140	
Trichlorofluoromethane	GCM0309-JUN19	µg/g	0.05	< 0.05	ND	50	84	50	140	74	50	140	
Vinyl Chloride	GCM0309-JUN19	µg/g	0.02	< 0.02	ND	50	79	50	140	82	50	140	

QC SUMMARY

Water Soluble Boron

Method: O.Reg. 153/04 | Internal ref.: ME-CA-IENVI SPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike		ry Limits	Spike	Recov	ery Limits
				(%)		Recovery	(%)		Recovery	(%)		
						(70)	(%)	Low	High	(%)	Low	High
Water Soluble Boron	ESG0050-JUN19	hð\ð	0.5	<0.5	ND	20	101	80	120	99	70	130

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- $\ensuremath{\textbf{NA}}$ The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

CA14440-JUN19 R

1-18-0615-2, Mississauga

Prepared for

Terraprobe

First Page

CLIENT DETAILS		LABORATORY DETAIL	S
Client	Terraprobe	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	11 Indell Lane	Address	185 Concession St., Lakefield ON, K0L 2H0
	Brampton, Ontario		
	L6T 3Y3. Canada		
Contact	Mariam Al Gailani	Telephone	705-652-2143
Telephone	519-722-7134	Facsimile	705-652-6365
Facsimile	905-796-2250	Email	brad.moore@sgs.com
Email	malgailani@terraprobe.ca	SGS Reference	CA14440-JUN19
Project	1-18-0615-2, Mississauga	Received	06/10/2019
Order Number		Approved	06/14/2019
Samples	Soil (4)	Report Number	CA14440-JUN19 R
		Date Reported	06/14/2019

COMMENTS

CCME Method Compliance: Analyses were conducted using analytical procedures that comply with the Reference Method for the CWS for Petroleum Hydrocarbons in Soil and have been validated for use at the SGS laboratory, Lakefield, ON site.

Quality Compliance: Instrument performance / calibration quality criteria were met and extraction and analysis limits for holding times were met.

nC6 and nC10 response factors within 30% of response factor for toluene: YES

nC10, nC16 and nC34 response factors within 10% of the average response for the three compounds: YES

C50 response factors within 70% of nC10 + nC16 + nC34 average: YES

Linearity is within 15%: YES

F4G - gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons. The results for F4 and F4G are both reported and the greater of the two values is to be used in application to the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

Temperature of Sample upon Receipt: 7 degrees C Cooling Agent Present:Yes Custody Seal Present:No

Chain of Custody Number:007159

SIGNATORIES

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-6
Exceedance Summary	7
QC Summary	8-12
Legend	13
Annexes	14

CA14440-JUN19 R

Client: Terraprobe

Project: 1-18-0615-2, Mississauga

Project Manager: Mariam Al Gailani

PACKAGE: REG153 - BTEX (SOIL)			Sa	mple Number	10	11	12	13
			s	ample Name	BH40/AS1	BH24/AS1	BH15/AS1	BH18/AS1
.1 = REG153 / SOIL / COARSE - TABLE 1 - Residential/F	Parkland/Industrial - UNDEFIN	NED	s	ample Matrix	Soil	Soil	Soil	Soil
.2 = REG153 / SOIL / COARSE - TABLE 3 - Industrial/Co	ommercial - UNDEFINED			Sample Date	04/06/2019	05/06/2019	07/06/2019	07/06/2019
Parameter	Units	RL	L1	L2	Result	Result	Result	Result
ЗТЕХ								
Benzene	hā\ā	0.02	0.02	0.32	< 0.02	< 0.02	< 0.02	< 0.02
Ethylbenzene	hð\ð	0.05	0.05	9.5	< 0.05	< 0.05	< 0.05	< 0.05
Toluene	hð\ð	0.05	0.2	68	< 0.05	< 0.05	< 0.05	< 0.05
Xylene (total)	hð\ð	0.05	0.05	26	< 0.05	< 0.05	< 0.05	< 0.05
m/p-xylene	hð\ð	0.05			< 0.05	< 0.05	< 0.05	< 0.05
o-xylene	hð\ð	0.05			< 0.05	< 0.05	< 0.05	< 0.05
PACKAGE: REG153 - Metals and In	organics (SOIL)		Sa	mple Number	10	11	12	13
			s	ample Name	BH40/AS1	BH24/AS1	BH15/AS1	BH18/AS1
1 = REG153 / SOIL / COARSE - TABLE 1 - Residential/F	Parkland/Industrial - UNDEFIN	NED	s	ample Matrix	Soil	Soil	Soil	Soil
2 = REG153 / SOIL / COARSE - TABLE 3 - Industrial/Co	ommercial - UNDEFINED			Sample Date	04/06/2019	05/06/2019	07/06/2019	07/06/2019
Parameter	Units	RL	L1	L2	Result	Result	Result	Result
Metals and Inorganics								
Moisture Content	%	-			6.0	8.4	16.5	3.4

CA14440-JUN19 R

Client: Terraprobe

Project: 1-18-0615-2, Mississauga

Project Manager: Mariam Al Gailani

		Sa	nple Number	10	11	12	13
		s	ample Name	BH40/AS1	BH24/AS1	BH15/AS1	BH18/AS1
d/Industrial - UNDEFIN	IED	s	ample Matrix	Soil	Soil	Soil	Soil
al - UNDEFINED			Sample Date	04/06/2019	05/06/2019	07/06/2019	07/06/2019
Units	RL	L1	L2	Result	Result	Result	Result
µg/g	10	25	55	< 10	< 10	< 10	< 10
µg/g	10			< 10	< 10	< 10	< 10
µg/g	10	10	230	< 10	< 10	< 10	< 10
µg/g	50	240	1700	189	< 50	56	< 50
µg/g	50	120	3300	401	< 50	< 50	78
µg/g	200	120	3300	1120			
Yes / No	-			NO	YES	YES	YES
_)		Sa	nple Number	10	11	12	13
		s	ample Name	BH40/AS1	BH24/AS1	BH15/AS1	BH18/AS1
d/Industrial - UNDEFIN	IED	s	ample Matrix	Soil	Soil	Soil	Soil
al - UNDEFINED			Sample Date	04/06/2019	05/06/2019	07/06/2019	07/06/2019
Units	RL	L1	L2	Result	Result	Result	Result
µg/g	0.05	0.05	18	< 0.05	< 0.05	< 0.05	< 0.05
µg/g	0.05	0.05	0.61	< 0.05	< 0.05	< 0.05	< 0.05
µg/g	0.05	0.05	13	< 0.05	< 0.05	< 0.05	< 0.05
	al - UNDEFINED Units µg/g µg/g µg/g µg/g µg/g µg/g Yes / No -) VIndustrial - UNDEFINED al - UNDEFINED Units µg/g µg/g µg/g	Units RL µg/g 10 µg/g 10 µg/g 10 µg/g 50 µg/g 50 µg/g 200 Yes / No - .) Windustrial - UNDEFINED units RL µg/g 0.05	S M Industrial - UNDEFINED S units RL L1 µg/g 10 25 µg/g 10 25 µg/g 10 25 µg/g 10 10 µg/g 50 240 µg/g 50 120 µg/g 50 120 µg/g 50 120 µg/g 50 120 Yes / No - Sar MIndustrial - UNDEFINED Sar al - UNDEFINED Sar µg/g 0.05 0.05 µg/g 0.05 0.05	Al - UNDEFINED Sample Date Units RL L1 L2 μg/g 10 25 55 μg/g 10 25 55 μg/g 10 10 230 μg/g 50 240 1700 μg/g 50 120 3300 μg/g 200 120 3300 μg/g 200 120 3300 γes / No - .) Sample Number Sample Name Vindustrial - UNDEFINED Sample Matrix al - UNDEFINED Sample Date Units RL L1 L2 μg/g 0.05 0.05 18 μg/g 0.05 0.05 0.61	Sample Name BH40/AS1 VIndustrial - UNDEFINED Sample Matrix Soil ulnts RL L1 L2 Result µg/g 10 25 55 <10	Sample Name BH40/AS1 BH24/AS1 $Mindustrial - UNDEFINED$ Sample Matrix Soil Soil $al - UNDEFINED$ RL L1 L2 Result Result $\mu g/g$ 10 25 55 < 10	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

CA14440-JUN19 R

Client: Terraprobe

Project: 1-18-0615-2, Mississauga

Project Manager: Mariam Al Gailani

PACKAGE: REG153 - VOC Surrogates	(SOIL)			mple Number	10	11	12	13	
				Sample Name	BH40/AS1	BH24/AS1	BH15/AS1	BH18/AS1	
1 = REG153 / SOIL / COARSE - TABLE 1 - Residential/Parkla	land/Industrial - UNDEFIN	ED		ample Matrix	Soil	Soil	Soil	Soil	
2 = REG153 / SOIL / COARSE - TABLE 3 - Industrial/Comme	ercial - UNDEFINED			Sample Date	04/06/2019	05/06/2019	07/06/2019	07/06/2019	
Parameter	Units	RL	L1	L2	Result	Result	Result	Result	
OC Surrogates									
Surr 1,2-Dichloroethane-d4	Surr Rec %	-			102	100	100	102	
Surr 4-Bromofluorobenzene	Surr Rec %	-			90	90	89	89	
Surr 2-Bromo-1-Chloropropane	Surr Rec %	-			87	92	86	87	
ACKAGE: REG153 - VOCs (SOIL)			Sar	mple Number	10	11	12	13	
			s	Sample Name	BH40/AS1	BH24/AS1	BH15/AS1	BH18/AS1	
1 = REG153 / SOIL / COARSE - TABLE 1 - Residential/Parkla	land/Industrial - UNDEFIN	ED	s	ample Matrix	Soil	Soil	Soil	Soil	
2 = REG153 / SOIL / COARSE - TABLE 3 - Industrial/Comme	ercial - UNDEFINED			Sample Date	04/06/2019	05/06/2019	07/06/2019	07/06/2019	
Parameter	Units	RL	L1	L2	Result	Result	Result	Result	
/OCs									
Acetone	hð\ð	0.5	0.5	16	< 0.5	< 0.5	< 0.5	< 0.5	
Bromomethane	µg/g	0.05	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Carbon tetrachloride	µg/g	0.05	0.05	0.21	< 0.05	< 0.05	< 0.05	< 0.05	
Chlorobenzene	µg/g	0.05	0.05	2.4	< 0.05	< 0.05	< 0.05	< 0.05	
Chloroform	hð\ð	0.05	0.05	0.47	< 0.05	< 0.05	< 0.05	< 0.05	
1,2-Dichlorobenzene	µg/g	0.05	0.05	6.8	< 0.05	< 0.05	< 0.05	< 0.05	
1,3-Dichlorobenzene	hð\ð	0.05	0.05	9.6	< 0.05	< 0.05	< 0.05	< 0.05	
1,4-Dichlorobenzene	hð\ð	0.05	0.05	0.2	< 0.05	< 0.05	< 0.05	< 0.05	
Dichlorodifluoromethane	µg/g	0.05	0.05	16	< 0.05	< 0.05	< 0.05	< 0.05	
1,1-Dichloroethane	µg/g	0.05	0.05	17	< 0.05	< 0.05	< 0.05	< 0.05	
1,2-Dichloroethane	µg/g	0.05	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	
1,1-Dichloroethylene	µg/g	0.05	0.05	0.064	< 0.05	< 0.05	< 0.05	< 0.05	
trans-1,2-Dichloroethylene	hð\ð	0.05	0.05	1.3	< 0.05	< 0.05	< 0.05	< 0.05	

CA14440-JUN19 R

Client: Terraprobe

Project: 1-18-0615-2, Mississauga

Project Manager: Mariam Al Gailani

PACKAGE: REG153 - VOCs (SOIL)			Sar	nple Number	10	11	12	13
				ample Name	BH40/AS1	BH24/AS1	BH15/AS1	BH18/AS1
L1 = REG153 / SOIL / COARSE - TABLE 1 - Residential/Park	kland/Industrial - UNDEFIN	NED	S	ample Matrix	Soil	Soil	Soil	Soil
L2 = REG153 / SOIL / COARSE - TABLE 3 - Industrial/Comm	nercial - UNDEFINED		;	Sample Date	04/06/2019	05/06/2019	07/06/2019	07/06/2019
Parameter	Units	RL	L1	L2	Result	Result	Result	Result
VOCs (continued)								
cis-1,2-Dichloroethylene	hð\ð	0.05	0.05	55	< 0.05	< 0.05	< 0.05	< 0.05
1,2-Dichloropropane	hð\ð	0.05	0.05	0.16	< 0.05	< 0.05	< 0.05	< 0.05
cis-1,3-dichloropropene	hð\ð	0.03			< 0.03	< 0.03	< 0.03	< 0.03
trans-1,3-dichloropropene	hð/ð	0.03			< 0.03	< 0.03	< 0.03	< 0.03
1,3-dichloropropene (total)	hð/ð	0.05	0.05	0.18	< 0.05	< 0.05	< 0.05	< 0.05
Ethylenedibromide	hð/ð	0.05	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05
n-Hexane	µg/g	0.05	0.05	46	< 0.05	< 0.05	< 0.05	0.08
Methyl ethyl ketone	hð\ð	0.5	0.5	70	< 0.5	< 0.5	< 0.5	< 0.5
Methyl isobutyl ketone	hð\ð	0.5	0.5	31	< 0.5	< 0.5	< 0.5	< 0.5
Methyl-t-butyl Ether	hð\ð	0.05	0.05	11	< 0.05	< 0.05	< 0.05	< 0.05
Methylene Chloride	hð\ð	0.05	0.05	1.6	< 0.05	< 0.05	< 0.05	< 0.05
Styrene	hð/ð	0.05	0.05	34	< 0.05	< 0.05	< 0.05	< 0.05
Tetrachloroethylene	µg/g	0.05	0.05	4.5	< 0.05	< 0.05	< 0.05	< 0.05
1,1,1,2-Tetrachloroethane	hð/ð	0.05	0.05	0.087	< 0.05	< 0.05	< 0.05	< 0.05
1,1,2,2-Tetrachloroethane	hð\ð	0.05	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,1,1-Trichloroethane	hð\ð	0.05	0.05	6.1	< 0.05	< 0.05	< 0.05	< 0.05
1,1,2-Trichloroethane	hð\ð	0.05	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05
Trichloroethylene	hð\ð	0.05	0.05	0.91	0.17	0.17	0.16	0.58
Trichlorofluoromethane	hð\ð	0.05	0.25	4	< 0.05	< 0.05	< 0.05	< 0.05
Vinyl Chloride	µg/g	0.02	0.02	0.032	< 0.02	< 0.02	< 0.02	< 0.02

EXCEEDANCE SUMMARY

COARSE - TABLE Coarse - Table Coarse						
1- Residential/Parklan Industrial d/Industrial - cial - U UNDEFINED UNDEFINED 40/AS1 F4 (C34 to C50) CCME Tier 1 µg/g 401 120 Gravimetric Heavy Hydrocarbons CCME Tier 1 µg/g 1120 120 Trichloroethylene EPA 5035A/5030B/8260C µg/g 0.17 0.05 24/AS1 Trichloroethylene EPA 5035A/5030B/8260C µg/g 0.17 0.05 15/AS1 Trichloroethylene EPA 5035A/5030B/8260C µg/g 0.16 0.05 18/AS1 EPA 5035A/5030B/8260C µg/g 0.08 0.05					REG153 / SOIL /	REG1
Residential/Parklan Industrial - u d/Industrial - u UNDEFINED Parameter Method Units Result L1 40/AS1 F4 (C34 to C50) CCME Tier 1 µg/g 401 120 Gravimetric Heavy Hydrocarbons CCME Tier 1 µg/g 1120 120 Gravimetric Heavy Hydrocarbons CCME Tier 1 µg/g 0.17 0.05 24/AS1 Trichloroethylene EPA 5035A/5030B/8260C µg/g 0.17 0.05 115/AS1 Trichloroethylene EPA 5035A/5030B/8260C µg/g 0.16 0.05 18/AS1 P-Hexane EPA 5035A/5030B/8260C µg/g 0.08 0.05					COARSE - TABLE	COARS
d/Industrial - μ cial - U Parameter Method Units Result L1 40/AS1 F4 (C34 to C50) CCME Tier 1 μg/g 401 120 Gravimetric Heavy Hydrocarbons CCME Tier 1 μg/g 1120 120 Gravimetric Heavy Hydrocarbons CCME Tier 1 μg/g 0.17 0.05 trichloroethylene EPA 5035A/5030B/8260C μg/g 0.17 0.05 trichloroethylene EPA 5035A/5030B/8260C μg/g 0.16 0.05 trichloroethylene EPA 5035A/5030B/8260C μg/g 0.16 0.05 trichloroethylene EPA 5035A/5030B/8260C μg/g 0.16 0.05 trichloroethylene EPA 5035A/5030B/8260C μg/g 0.08 0.05					1 -	
Parameter Method Units Result L1 40/AS1 F4 (G34 to C50) CCME Tier 1 µg/g 401 120 Gravimetric Heavy Hydrocarbons CCME Tier 1 µg/g 1120 120 Trichloroethylene EPA 5035A/5030B/8260C µg/g 0.17 0.05 24/AS1 Trichloroethylene EPA 5035A/5030B/8260C µg/g 0.17 0.05 15/AS1 Trichloroethylene EPA 5035A/5030B/8260C µg/g 0.16 0.05 18/AS1 n-Hexane EPA 5035A/5030B/8260C µg/g 0.08 0.05					Residential/Parklan	Industri
Parameter Method Units Result L1 40/AS1 F4 (C34 to C50) CCME Tier 1 μg/g 401 120 Gravimetric Heavy Hydrocarbons CCME Tier 1 μg/g 1120 120 Trichloroethylene EPA 5035A/5030B/8260C μg/g 0.17 0.05 12/AS1 Trichloroethylene EPA 5035A/5030B/8260C μg/g 0.17 0.05 15/AS1 Trichloroethylene EPA 5035A/5030B/8260C μg/g 0.16 0.05 18/AS1 EPA 5035A/5030B/8260C μg/g 0.16 0.05 18/AS1 EPA 5035A/5030B/8260C μg/g 0.16 0.05					d/Industrial -	cial - Ul
Works Max Max <t< td=""><td></td><td></td><td></td><td></td><td>UNDEFINED</td><td></td></t<>					UNDEFINED	
F4 (C34 to C50) CCME Tier 1 μg/g 401 120 Gravimetric Heavy Hydrocarbons CCME Tier 1 μg/g 1120 120 Trichloroethylene EPA 5035A/5030B/8260C μg/g 0.17 0.05 24/AS1 Trichloroethylene EPA 5035A/5030B/8260C μg/g 0.17 0.05 15/AS1 Trichloroethylene EPA 5035A/5030B/8260C μg/g 0.16 0.05 18/AS1 n-Hexane EPA 5035A/5030B/8260C μg/g 0.08 0.05	Parameter	Method	Units	Result	L1	I
Constrainty Form	140/AS1					
Gravimetric Heavy Hydrocarbons CCME Tier 1 μg/g 1120 120 Trichloroethylene EPA 5035A/5030B/8260C μg/g 0.17 0.05 24/AS1 Trichloroethylene EPA 5035A/5030B/8260C μg/g 0.17 0.05 115/AS1 Trichloroethylene EPA 5035A/5030B/8260C μg/g 0.16 0.05 115/AS1 Trichloroethylene EPA 5035A/5030B/8260C μg/g 0.16 0.05 118/AS1 rhexane EPA 5035A/5030B/8260C μg/g 0.08 0.05	F4 (C34 to C50)	CCME Tier 1	hð\ð	401	120	
24/AS1 Trichloroethylene EPA 5035A/5030B/8260C μg/g 0.17 0.05 115/AS1 Trichloroethylene EPA 5035A/5030B/8260C μg/g 0.16 0.05 118/AS1 n-Hexane EPA 5035A/5030B/8260C μg/g 0.08 0.05	Gravimetric Heavy Hydrocarbons	CCME Tier 1		1120		
Trichloroethylene EPA 5035A/5030B/8260C μg/g 0.17 0.05 15/AS1 Trichloroethylene EPA 5035A/5030B/8260C μg/g 0.16 0.05 18/AS1 r-Hexane EPA 5035A/5030B/8260C μg/g 0.08 0.05	Trichloroethylene	EPA 5035A/5030B/8260C	µg/g	0.17	0.05	
Trichloroethylene EPA 5035A/5030B/8260C μg/g 0.17 0.05 15/AS1 Trichloroethylene EPA 5035A/5030B/8260C μg/g 0.16 0.05 18/AS1 r-Hexane EPA 5035A/5030B/8260C μg/g 0.08 0.05					1	
115/AS1 Trichloroethylene EPA 5035A/5030B/8260C μg/g 0.16 0.05 118/AS1 n-Hexane EPA 5035A/5030B/8260C μg/g 0.08 0.05	124/AS1					
Trichloroethylene EPA 5035A/5030B/8260C μg/g 0.16 0.05 18/AS1 n-Hexane EPA 5035A/5030B/8260C μg/g 0.08 0.05	Trichloroethylene	EPA 5035A/5030B/8260C	hð\ð	0.17	0.05	
Trichloroethylene EPA 5035A/5030B/8260C μg/g 0.16 0.05 18/AS1 n-Hexane EPA 5035A/5030B/8260C μg/g 0.08 0.05						
18/AS1 n-Hexane EPA 5035A/5030B/8260C μg/g 0.08 0.05	115/AS1					
n-Hexane EPA 5035A/5030B/8260C µg/g 0.08 0.05	Trichloroethylene	EPA 5035A/5030B/8260C	µg/g	0.16	0.05	
n-Hexane EPA 5035A/5030B/8260C µg/g 0.08 0.05						
	118/AS1					
Trichloroethylene EPA 5035A/5030B/8260C μg/g 0.58 0.05	n-Hexane	EPA 5035A/5030B/8260C	hð\ð	0.08	0.05	
	Trichloroethylene	EPA 5035A/5030B/8260C	hð/ð	0.58	0.05	

Petroleum Hydrocarbons (F1)

Method: CCME Tier 1 | Internal ref.: ME-CA-[ENVIGC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Duplicate LC		S/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
F1 (C6-C10)	GCM0196-JUN19	hð\ð	10	<10	ND	30	93	80	120	106	60	140

Petroleum Hydrocarbons (F2-F4)

Method: CCME Tier 1 | Internal ref.: ME-CA-IENVIGC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Dup	Duplicate LCS/Spike Blank				Matrix Spike / Ref.			
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover (%	ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High	
F2 (C10-C16)	GCM0203-JUN19	hð\ð	10	<10	ND	30	114	80	120	111	60	140	
F3 (C16-C34)	GCM0203-JUN19	µg/g	50	<50	ND	30	114	80	120	111	60	140	
F4 (C34-C50)	GCM0203-JUN19	µg/g	50	<50	ND	30	114	80	120	111	60	140	

Petroleum Hydrocarbons (F4G)

Method: CCME Tier 1 | Internal ref.: ME-CA-[ENVIGC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
								Low	High	(%)	Low	High
F4G-sg (GHH)	GCM0272-JUN19	µg/g	200	<200	NA	30	101	80	120	NA	60	140

Volatile Organics

Method: EPA 5035A/5030B/8260C | Internal ref.: ME-CA-IENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference	Reference		Blank	RPD	AC (%)	AC Spike (%) Recovery	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(/	(%)	Low	High	(%)	Low	High
1,1,1,2-Tetrachloroethane	GCM0195-JUN19	hð\ð	0.05	< 0.05	ND	50	83	60	130	88	50	140
1,1,1-Trichloroethane	GCM0195-JUN19	hð\ð	0.05	< 0.05	ND	50	79	60	130	84	50	140
1,1,2,2-Tetrachloroethane	GCM0195-JUN19	µg/g	0.05	< 0.05	ND	50	80	60	130	86	50	140
1,1,2-Trichloroethane	GCM0195-JUN19	µg/g	0.05	< 0.05	ND	50	80	60	130	87	50	140
1,1-Dichloroethane	GCM0195-JUN19	µg/g	0.05	< 0.05	ND	50	77	60	130	82	50	140
1,1-Dichloroethylene	GCM0195-JUN19	µg/g	0.05	< 0.05	ND	50	80	60	130	86	50	140
1,2-Dichlorobenzene	GCM0195-JUN19	µg/g	0.05	< 0.05	ND	50	83	60	130	88	50	140
1,2-Dichloroethane	GCM0195-JUN19	µg/g	0.05	< 0.05	ND	50	80	60	130	87	50	140
1,2-Dichloropropane	GCM0195-JUN19	µg/g	0.05	< 0.05	ND	50	82	60	130	89	50	140
1,3-Dichlorobenzene	GCM0195-JUN19	µg/g	0.05	< 0.05	ND	50	83	60	130	89	50	140
1,4-Dichlorobenzene	GCM0195-JUN19	µg/g	0.05	< 0.05	ND	50	84	60	130	88	50	140
Acetone	GCM0195-JUN19	µg/g	0.5	< 0.5	ND	50	79	50	140	86	50	140
Benzene	GCM0195-JUN19	µg/g	0.02	< 0.02	ND	50	83	60	130	90	50	140
Bromodichloromethane	GCM0195-JUN19	µg/g	0.05	< 0.05	ND	50	82	60	130	88	50	140
Bromoform	GCM0195-JUN19	µg/g	0.05	< 0.05	ND	50	78	60	130	82	50	140
Bromomethane	GCM0195-JUN19	µg/g	0.05	< 0.05	ND	50	83	50	140	79	50	140
Carbon tetrachloride	GCM0195-JUN19	µg/g	0.05	< 0.05	ND	50	83	60	130	87	50	140
Chlorobenzene	GCM0195-JUN19	µg/g	0.05	< 0.05	ND	50	83	60	130	90	50	140
Chloroform	GCM0195-JUN19	µg/g	0.05	< 0.05	ND	50	83	60	130	89	50	140
cis-1,2-Dichloroethylene	GCM0195-JUN19	µg/g	0.05	< 0.05	ND	50	83	60	130	89	50	140

Volatile Organics (continued)

Method: EPA 5035A/5030B/8260C | Internal ref.: ME-CA-IENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	PD AC (%)	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery		ry Limits %)
						(70)		Low	High	(%)	Low	High
cis-1,3-dichloropropene	GCM0195-JUN19	µg/g	0.03	< 0.03	ND	50	81	60	130	81	50	140
Dibromochloromethane	GCM0195-JUN19	µg/g	0.05	< 0.05	ND	50	80	60	130	85	50	140
Dichlorodifluoromethane	GCM0195-JUN19	µg/g	0.05	< 0.05	ND	50	62	50	140	60	50	140
Ethylbenzene	GCM0195-JUN19	µg/g	0.05	< 0.05	ND	50	84	60	130	90	50	140
Ethylenedibromide	GCM0195-JUN19	µg/g	0.05	< 0.05	ND	50	81	60	130	87	50	140
n-Hexane	GCM0195-JUN19	µg/g	0.05	< 0.05	ND	50	83	60	130	76	50	140
m/p-xylene	GCM0195-JUN19	µg/g	0.05	< 0.05	ND	50	83	60	130	88	50	140
Methyl ethyl ketone	GCM0195-JUN19	µg/g	0.5	< 0.5	ND	50	80	50	140	84	50	140
Methyl isobutyl ketone	GCM0195-JUN19	µg/g	0.5	< 0.5	ND	50	80	50	140	84	50	140
Methyl-t-butyl Ether	GCM0195-JUN19	µg/g	0.05	< 0.05	ND	50	84	60	130	86	50	140
Methylene Chloride	GCM0195-JUN19	µg/g	0.05	< 0.05	ND	50	80	60	130	86	50	140
o-xylene	GCM0195-JUN19	µg/g	0.05	< 0.05	ND	50	84	60	130	90	50	140
Styrene	GCM0195-JUN19	µg/g	0.05	< 0.05	ND	50	83	60	130	90	50	140
Tetrachloroethylene	GCM0195-JUN19	µg/g	0.05	< 0.05	ND	50	82	60	130	87	50	140
Toluene	GCM0195-JUN19	µg/g	0.05	< 0.05	ND	50	83	60	130	88	50	140
trans-1,2-Dichloroethylene	GCM0195-JUN19	µg/g	0.05	< 0.05	ND	50	78	60	130	83	50	140
trans-1,3-dichloropropene	GCM0195-JUN19	µg/g	0.03	< 0.03	ND	50	77	60	130	76	50	140
Trichloroethylene	GCM0195-JUN19	hð/ð	0.05	< 0.05	5	50	83	60	130	67	50	140
Trichlorofluoromethane	GCM0195-JUN19	hð/ð	0.05	< 0.05	ND	50	78	50	140	83	50	140
Vinyl Chloride	GCM0195-JUN19	µg/g	0.02	< 0.02	ND	50	75	50	140	79	50	140

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
- ↑ Reporting limit raised.
- ↓ Reporting limit lowered.
- $\ensuremath{\textbf{NA}}$ The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

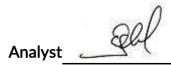
This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

CERTIFICATE OF ANALYSIS

Company:	SGS Lakefield Research Ltd.	Report Date:	17-Mar-20
Contact:	Mr. Brad Moore	Analysis Date:	17-Mar-20
Client Address:	185 Concession Street, PO Box 4300, Lakefield, ON	Received Date:	16-Mar-20
Client Reference:	CA60010-MAR20	LEX Project Number:	08200471
Sampling Date:		Number of Analyses:	3

Analysis Requested Bulk Asbestos by PLM


Page 1 of 2

Analysis was performed in accordance with the method EPA/600/R-93/116, Method for the Determination of Asbestos in Bulk Building Materials adopted in Designated Substance - Asbestos on Construction Projects and in Buildings and Repair Operations - made under the Occupational Health and Safety Act Ontario Regulation 278/05. LEX Scientific Inc. is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP 101949) by the National Institute of Standards and Technology for analysis of bulk materials for asbestos.

German Leal, B.Sc. *Laboratory Manager*

		Fibrous Asbestos	Content %	Other Materia	Is Content %	
Client Sample:	<u>STA 11+600 NBL,</u> L2	Asbestos Detected?	<u>No</u>			
LEX Sample:	01	Chrysotile:	None Detected	Cellulose:	None Detected	
Layers Analyzed:	Asphalt	Amosite:	None Detected	MMVF:	None Detected	
Colour:	Black/Grey	Crocidolite:	None Detected	Other Fibres:	None Detected	
Description:	Bottom Layer (50-80)	Other Amphiboles:	None Detected	Non-Fibrous:	100	
		Comments:	N/A			

Other Amphiboles: ac=actinolite, a=anthophyllite, t-tremolite, u=unidentified MMVF: Man Made Vitreous Fibres: Fibreglass, Min. Wool, Rockwool, Glasswool PLM - method detection limit is 0.1%

This test report relates only to the items tested and must not be used to claim product endorsement by NVLAP or any agency of the United States government. This test report must not be reproduced, except in full, without the written consent of the laboratory.

291 Woodlawn Road West, Unit B-12, Guelph, Ontario, N1H 7L6

1.800.824.7082

e-mail: admin@lexscientific.com Website: https://lexscientific.com

		Fibrous Asbestos	Content %	Other Materia	Is Content %
Client Sample:	<u>STA 13+080 SBL,</u> <u>L1</u>	Asbestos Detected?	<u>No</u>		
LEX Sample:	02	Chrysotile:	None Detected	Cellulose:	None Detected
Layers Analyzed:	Asphalt	Amosite:	None Detected	MMVF:	None Detected
Colour:	Black/Grey	Crocidolite:	None Detected	Other Fibres:	None Detected
Description:	Middle Layer (70-180)	Other Amphiboles:	None Detected	Non-Fibrous:	100
		Comments:	N/A		
Client Sample:	<u>STA 15+360 NBL,</u>	Asbestos Detected?	<u>No</u>		
	<u>L1</u>				
LEX Sample:	03	Chrysotile:	None Detected	Cellulose:	None Detected
Layers Analyzed:	Asphalt	Amosite:	None Detected	MMVF:	None Detected
Colour:	Black/Grey	Crocidolite:	None Detected	Other Fibres:	None Detected
Description:	Middle Layer (40-200)	Other Amphiboles:	None Detected	Non-Fibrous:	100
		Comments:	N/A		

Other Amphiboles: ac=actinolite, a=anthophyllite, t-tremolite, u=unidentified MMVF: Man Made Vitreous Fibres: Fibreglass, Min. Wool, Rockwool, Glasswool PLM - method detection limit is 0.1%

This test report relates only to the items tested and must not be used to claim product endorsement by NVLAP or any agency of the United States government. This test report must not be reproduced, except in full, without the written consent of the laboratory.

291 Woodlawn Road West, Unit B-12, Guelph, Ontario, N1H 7L6

1.800.824.7082

e-mail: admin@lexscientific.com Website: https://lexscientific.com

APPENDIX D Falling Weight Deflectometer Testing Results

Falling Weight Deflectometer Testing – Cawthra Road from South Service Road to Eastgate Parkway, Mississauga, Ontario

Prepared For:

Terraprobe Inc.

Sepideh D-Monfared, MESc., P.Eng. Project Manager Terraprobe Inc. 11 Indell Lane, Brampton, ON L6T 3Y3

Project Number: ET19-1111A

Prepared By:

Engtec Consulting Inc. 12-100 Hanlan Road

Vaughan, Ontario L4L 4V8 T: 1.905.856.2988 F: 1.905.856-2989 www.engtec.ca

Date Submitted: August 6, 2019

Table of Contents

Description

Pages

Ex	ecu	tive Summary)
1	I	ntroduction	ļ
2	F	Project Methodology4	ļ
3	E	Evaluated Roadway5	;
4	F	Falling Weight Deflectometer (FWD) Testing and Analysis5	;
	4.1	Normalization of Deflection Data7	,
	4.2	Backcalculation Analysis7	,
	4.3	Effective Structure Number SN _{eff}	;
5	(Closure9)
6	F	References)

Appendices:

Appendix A:	Normalized FWD Deflection Data and Effective Structural Number
Appendix B:	Backcalculated Pavement Layer Moduli
Appendix C:	Calibration Certificate – FWD Machine

Property and Confidentiality

This engineering document is the work and property of Engtec Consulting Inc. (Engtec), and as such is protected under the Copyright Law. It can only be used for the purposes mentioned herein for our client Terraprobe Inc. Any reproduction or adaptation, whether partial or total, is strictly prohibited without having obtained Engtec and its client's prior written authorization.

Test results mentioned herein are only valid for the road referenced in this report. The factual data, interpretations and any recommendations contained in this report pertain to a specific project, as described in the report and are not applicable to any other project or location.

Executive Summary

Engtec Consulting Inc. (Engtec) conducted Falling Weight Deflectometer (FWD) testing on Cawthra Road from South Service Road to Eastgate Parkway, Mississauga, Ontario. The road has two (2) lanes in each travel direction and the approximate length of the road is about 5.435km. This project was undertaken at the request of Ms. Sepideh D-Monfared, Project Manager, Terraprobe Inc.

The non-destructive testing/evaluation on this project consisted of the following elements:

- In-situ FWD testing at approximately 100m intervals on each travel direction, as requested by the Project Manager;
- Recording ambient air and asphalt surface temperatures during the field testing;
- Deflection Normalization to 40kN load and 25°C temperature for deflection basin assessment;
- In-Situ Subgrade Resilient Modulus assessment using back-calculation procedures; and
- Backcalculation of asphalt, concrete and granular layer moduli and effective structural number.

1 Introduction

Engtec Consulting Inc. (Engtec) was retained by Terraprobe Inc. to undertake Falling Weight Deflectometer (FWD) testing on Cawthra Road from South Service Road to Eastgate Parkway, Mississauga, Ontario. The road has two (2) lanes in each travel direction and the length is approximately 5.435km. The pavement sections tested and evaluated under this project are listed in Table 1 below.

Sec. #	Section	Station	Length, m	
1	Northbound Driving Lane (NBDL)			
2	Northbound Passing Lane (NBPL)	10,000 15,425	5425.0	
3	Southbound Driving Lane (SBDL)	10+000 – 15+435	5435.0	
4	Southbound Passing Lane (SBPL)			

Table 1: Tested Pavement Sections and Lengths.

The project employed the use of Engtec's Falling Weight Deflectometer (FWD) to perform field testing at approximately 100m intervals in each travel direction. For this project, the dynamic load applied using the FWD was kept between 30kN to 85kN (standard for major road pavements) range, as per standard industry practices and MTO protocols outlined in the Publication 053 by Materials and Research Office (MERO-053). The deflection profile recorded by the FWD equipment was then normalized to 40kN at 25°C temperature, as per the industry protocols outlined in the above-mentioned references.

The average pavement structure of the pavement sections was provided by the Terraprobe Inc. to Engtec and was used for detailed data analysis on this project. The data analysis protocol adopted for this project included the backcalculation of the in-situ Subgrade Resilient Modulus (M_R), Granular, Concrete and Asphalt Layer Moduli. In addition, industry standardized analysis that included Normalized Deflection analysis consisting of determination/assessment of center plate deflection (d_0), deflection ration (d_0/d_{200}) and areas of deflection basin (A) were also determined.

2 Project Methodology

Engtec undertook FWD testing on the subject pavement sections in the night of June 20th, 2019 in order to backcalculate the pavement layer moduli. The objective of this testing was to provide the structural assessment for different pavement layers for each pavement section. Compilation of data collected from the field investigation and the backcalculation results are presented in this report for information purposes.

To achieve this objective, Engtec has performed the following tasks:

- 1. In-situ FWD testing at approximately 100m intervals on each travel direction;
- 2. Recording ambient air and asphalt surface temperatures during the field testing;
- 3. Deflection Normalization to 40kN load and 25°C temperature for deflection basin assessment;
- 4. In-Situ Subgrade Resilient Modulus assessment using backcalculation procedures; and

5. Backcalculation of Concrete, Asphalt and Granular Layer Moduli.

3 Evaluated Roadway

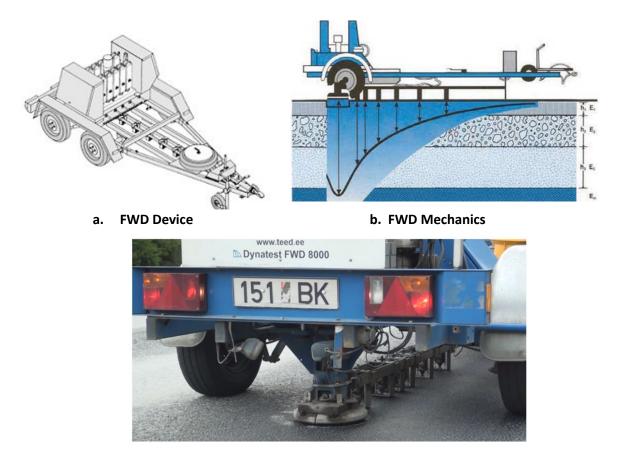
A total of one hundred seventeen (117) FWD test points were conducted in the field on the various pavement sections. The pavement sections and the number of FWD tests for each section are summarized in Table 2 below.

Terraprobe conducted a borehole (BH) investigation on the roads and provided Engtec with the summary of average pavement layer thicknesses. Based on the pavement average layer thicknesses and structure composition, the road was divided into four section for the analysis purpose. Table 2 shows the average of the pavement layer thicknesses for each pavement sections. It should be noted that the average pavement layer thicknesses for each pavement section used in the analysis are based upon the borehole information provided to Engtec.

Table 2: Number of FWD Tests and Layer Thicknesses from the Boreholes (BHs) for each Pavement
Section

Sec. #	Pavement Section	Station	No. of FWD Tests	Average Thicknesses, mm Asphalt	Concrete	Granular	Total
1	South Service Rd. to 200m North of Silver Creek Blvd (All Lanes)	10+000 to 12+750	61	105	200	300	605
2	200 m North of Silver Creek to Burnhamthorpe Rd (All Lanes)	12+750 To 14+300	32	175	_	405	580
3	Burnhamthorpe Rd to Meadows Blvd (All Lanes)	14+300 To 15+100	16	140	-	460	600
4	Meadows Blvd to Eastgate Parkway (All Lanes)	15+100 to 15+400	8	300	-	375	675

4 Falling Weight Deflectometer (FWD) Testing and Analysis


A program of FWD load/deflection testing was completed in the night of June 20th, 2019 by Engtec to assess the structural condition of Cawthra Road from South Service Road to Eastgate Parkway. The testing device used by Engtec is a Dynatest 8082 Heavy Weight Deflectometer calibrated in May 1st, 2018 by Dynatest North America.

At each test location, six (6) load levels (ranging between 30kN to 85kN), were used to determine the deflection response of the existing pavement structure. For the reader's information, the 40kN load level simulates the wheel load of a standard heavy truck (80kN single axle load). The FWD data was analyzed using the FWD Area computer analysis program for backcalculation of subgrade M_R and deflection

normalization works accordingly. The asphalt and granular layers moduli were backcalculated using ELMOD 6 Software developed by Dynatest.

The measured FWD dynamic deflections were normalized to represent the equivalent deflections for a design wheel load of 40kN and asphalt concrete temperature of 25°C. The Strategic Highways Research Program (SHRP) specifies the locations of the sensors, and the minimum number of loading drops that are to be applied to a pavement section, so that the standard deviation and variance in the backcalculated results can be ascertained. The sensor spacing was set as per standard protocols as 0mm, 200mm, 300mm, 450mm, 600mm, 900mm, 1200mm, 1500mm and 1800mm (which are in accordance with the SHRP specifications and MERO-019 requirements) [1,2].

 ${\bf c}$ - Falling Weight Deflectometer Testing (Load Cells and Geophones)

Figure 1: Falling Weight Deflectometer Device, Mechanics and Testing

The FWD applies an impact load to the pavement surface, and measures the surface deformation (deflection basin), using seven geophones. This data is recorded by the data acquisition system, and then used to backcalculate the material properties of individual layers, if the thicknesses of the pavement layers are known. This process can also be performed vice-versa in order to determine the layer thicknesses, if the material properties are known.

It is also important to determine the surface, sub-surface and ambient air temperatures at the time of the testing, because it is critical to conduct the backcalculation for flexible pavement with hot-mix asphalt

surface which has high thermal susceptibility. For the project specified testing plan, the ambient air temperatures and the pavement surface temperatures were detected on site using the thermal gun attached to the data acquisition system. These temperatures are further used to calculate the asphalt layer temperature for any analysis contained in this report.

Once the FWD data for various pavement sections was obtained, a normalized deflection and deflection ratio coupled with the area of deflection basin analysis was performed.

4.1 Normalization of Deflection Data

The data collected from the pavement sections using the FWD is stored in Microsoft[®] Access and ASCII file format. Normalization of the FWD data to 40kN applied load at 25°C temperature was performed using FWD Area Software to estimate the structural capacity of the existing pavement. The deflection basin profile and individual deflections approximate the existing condition of the pavement that is being tested using the FWD machine. The criteria that are widely used in the industry and employed in this study are as follows:

- d₀: Centre Plate Deflection (primarily measures the subgrade strength and the pavement stiffness);
- d₀/d₂₀₀: Ratio of Centre Plate Deflection to Sensor Deflection at 200mm from the Centre Plate. The ratio of d₀/d₂₀₀ indicates the strength of the subgrade relative to the overlying pavement structure, as d₀/d₂₀₀ increases, the horizontal tensile forces in the pavement structure layer(s) increases. For given asphalt layer conditions, d₀/d₂₀₀ is a measure of asphalt strain and the potential for material fracture of cracking to occur.
- Normalized Area: Area of the Deflection Basin (overall ability of the pavement to effectively distribute vehicular loading).

The details of this analysis are attached in Appendix A Tables 1-A through 4-A. Summary of the results presented in Appendix A for normalized deflection are shown in Table 3.

4.2 Backcalculation Analysis

Once the deflection profile was obtained for each drop, the backcalculated of independent pavement layer moduli were estimated using the ELMOD 6 software developed by Dynatest and accepted in the industry as a standard. The backcalculation under ELMOD 6, was undertaken using the average layer thicknesses. The thicknesses of the pavement were measured from boreholes conducted by Terraprobe Inc. Since the asphalt, concrete and granular layer thicknesses varied, the backcalculation was conducted based on the overall average pavement layer thicknesses for each pavement section shown in Table 2. Table 4 shows the average backcalculated pavement layer moduli for all pavement sections. Detailed backcalculation for each pavement section are attached in Appendix B, Tables 1-B through 4-B.

The pavement subgrade resilient modulus (M_R) of the existing pavement section was also backcalculated from the FWD deflection data and corrected according to the AASHTO 1993 pavement Design Guide procedure. The AASHTO correction factor used to calculate the resilient Modulus (M_r) is 0.3. The backcalculated average subgrade resilient modulus (M_r) values for all pavement sections are shown in Table 4.

4.3 Effective Structure Number SN_{eff}

The FWD data was used to calculate the Effective Structure Number (SN_{eff}) of the existing pavement structure based on the Effective Modulus (E_p) of all pavement layers above the subgrade layer. Table 3 shows the summary of SN_{eff} for all pavement sections. Detail calculations of the SN_{eff} is presented in Appendix A, Tables 1-A through 4-A.

Table 3: Normalized deflection, deflection basin area, and effective structural number for testedpavement sections.

Sec. #	Pavement Section	Station	d _{0adj} (mm)	d ₀ /d ₂₀₀	A (mm)	SN _{eff} (mm)
1	South Service Rd. to 200 m North of Silver Creek Blvd	10+000 to 12+750	0.10	1.11	778	431 [*]
2	200 m North of Silver Creek to Burnhamthorpe Rd	12+750 To 14+300	0.26	1.17	608	206
3	Burnhamthorpe Rd to Meadows Blvd	14+300 To 15+100	0.22	1.20	606	213
4	Meadows Blvd to Eastgate Parkway	15+100 to 15+435	0.18	1.20	643	266

Note: * This high SN_{eff} is due to the effect of 200 mm of concrete in this pavement section.

Table 4: Average Backcalculated Layer Moduli for Tested Pavement Sections.

Sec. #	Pavement Section	Station	Layer Thickness, mm			Backcalculated Layer Moduli, MPa				Corrected Subgrade Resilient Modulus
500. #	r avenient section	Station	Asphalt	Concrete	Granular	Asphalt	Concrete	Granular	Subgrade	
1	South Service Rd. to 200 m North of Silver Creek Blvd	10+000 to 12+750	105	200	300	9875	23036	226	282	85
2	200 m North of Silver Creek to Burnhamthorpe Rd	12+750 To 14+300	175	-	405	6413	-	258	126	38
3	Burnhamthorpe Rd to Meadows Blvd	14+300 To 15+100	140	-	460	8893	-	306	129	39
4	Meadows Blvd to Eastgate Parkway	15+100 to 15+435	300	-	375	3298	-	249	149	45

5 Closure

This report summarizes Engtec Consulting Inc. efforts to analyze the FWD data, undertake backcalculation of pavement layer moduli and estimate the Effective Structure number SN_{eff} for Cawthra Road from South Service Road to Eastgate Parkway, Mississauga, Ontario.

We trust that this report is satisfactory for your purposes. Should you have any questions, please contact the undersigned.

Yours truly,

Hassan, Salama, Ph.D., P. Eng. Pavement Engineer Engtec Consulting Inc.

Salman Bhutta, Ph.D., P. Eng. Principal Engtec Consulting Inc.

6 References

- 1. "Manual for FWD Testing in the Long-Term Pavement Performance Program," SHRP-P-661, PCS Law Engineering and Braun Intertec Pavement, Inc., National Research Council, Washington, DC, 1993.
- 2. MTO, Pavements and Foundations Section, "Falling Weight Deflectometer (FWD) Testing Guideline," MERO-019, 2005
- 3. Anderson, P. D., "Cost-Effective Structural Rehabilitation of Pavements Using NDT Deflection Methods," 1989.
- 4. Horak, E. and Emery, S. "Falling Weight Deflectometer Bowl Parameters as Analysis Tool for Pavement Structural Evaluations," Australian Road Research Board, ARRB, 2016
- 5. Pierce, L. M., "Development of a Computer Program for the Determination of the Area Value and Subgrade Resilient Modulus Using Dynatest FWD," Report/Software by Washington State Department of Transportation, May 1999.
- Zhang, Z., Claros, G., Manuel, L., and Damnjanovic, I.," Development of Structural Condition Index to Support Pavement Maintenance and Rehabilitation Decisions at Network Level," Transportation Research Record No. 1827, pp. 10 – 17, 200
- 7. MTO, "Adaptation and Verification Of AASHTO Pavement Design Guide For Ontario Conditions," Final Report, March 2008

Appendix A:

Normalized FWD Deflection Data and Effective Structural Number

				-	
Station	Direction	d _{oadj} (mm)	d ₀ /d ₂₀₀	A (mm)	SN _{eff} (mm)
10.000	NBDL	0.075	1.10	808	491
10.000	SBDL	0.102	1.08	785	394
10.015	SBPL	0.089	1.07	810	482
10.025	NBPL	0.094	1.09	793	450
10.025	SBDL	0.092	1.10	781	440
10.050	NBDL	0.091	1.09	787	445
10.100	SBPL	0.105	1.07	777	427
10.125	NBPL	0.119	1.03	814	489
10.125	SBDL	0.076	1.11	798	428
10.225	SBPL	0.132	1.16	685	311
10.230	NBPL	0.076	1.14	796	450
10.250	NBDL	0.095	1.06	814	506
10.395	SBDL	0.103	1.09	762	422
10.400	NBPL	0.096	1.08	792	440
10.425	SBPL	0.087	1.08	803	489
10.450	NBDL	0.102	1.08	776	423
10.525	SBDL	0.084	1.12	773	407
10.550	NBPL	0.078	1.10	807	493
10.623	SBPL	0.097	1.06	803	426
10.650	NBDL	0.083	1.11	793	416
10.725	SBDL	0.081	1.09	801	452
10.750	NBPL	0.099	1.11	786	413
10.825	SBPL	0.097	1.14	742	392
10.851	NBDL	0.100	1.14	755	415
10.925	SBDL	0.075	1.07	828	487
10.950	NBPL	0.094	1.06	813	478
11.025	SBPL	0.088	1.08	809	500
11.050	NBDL	0.192	1.17	612	252
11.125	SBDL	0.082	1.08	807	485
11.150	NBPL	0.076	1.09	819	446
11.225	SBPL	0.090	1.08	799	472
11.283	NBDL	0.128	1.05	774	444

Table 1-A: FWD Data Analysis - Cawthra Road from South Service Rd. to 200 m North of Silver Creek Blvd - All Lanes in both Directions (St 10+000 to 12+750).

m North of Silver Creek Blvd - All Lanes in both Directions (St 10+000 to 12+750).						
Station	Direction	d _{oadj} (mm)	d ₀ /d ₂₀₀	A (mm)	SN _{eff} (mm)	
11.325	SBDL	0.144	1.11	707	372	
11.350	NBPL	0.098	1.07	793	448	
11.425	SBPL	0.078	1.10	817	492	
11.450	NBDL	0.129	1.17	688	341	
11.524	SBDL	0.103	1.13	759	400	
11.550	NBPL	0.074	1.15	794	457	
11.625	SBPL	0.106	1.09	780	435	
11.665	NBDL	0.068	1.13	813	517	
11.725	SBDL	0.086	1.09	774	422	
11.750	NBPL	0.090	1.08	809	468	
11.825	SBPL	0.114	1.11	757	453	
11.850	NBDL	0.054	1.12	869	533	
11.925	SBDL	0.104	1.25	686	324	
11.950	NBPL	0.068	1.20	781	373	
12.025	SBPL	0.071	1.18	782	431	
12.053	NBDL	0.101	1.11	750	378	
12.125	SBDL	0.093	1.17	747	370	
12.150	NBPL	0.061	1.25	793	392	
12.226	SBPL	0.102	1.17	754	432	
12.250	NBDL	0.071	1.11	818	426	
12.325	SBDL	0.094	1.11	762	402	
12.350	NBPL	0.076	1.10	814	461	
12.424	SBPL	0.075	1.13	806	485	
12.455	NBDL	0.101	1.10	775	418	
12.525	SBDL	0.097	1.10	773	470	
12.550	NBPL	0.106	1.10	765	435	
12.625	SBPL	0.096	1.09	786	440	
12.650	NBDL	0.145	1.12	713	378	
12.725	SBDL	0.183	1.12	661	271	
Mean		0.10	1.11	778	431	
Standard	Deviation	0.03	0.04	44	55	
C.O.	V (%)	26.03	3.87	6	13	
Maximum		0.19	1.25	869	533	
Minimum		0.05	1.03	612	252	

Table 1-A (Cont): FWD Data Analysis - Cawthra Road from South Service Rd. to 200 m North of Silver Creek Blvd - All Lanes in both Directions (St 10+000 to 12+750).

Notes:

Station 10+000 is the South Side of the North Pedestrian Crossing at the Intersection of Cawthra Rd and S. Service Rd.

	mthorpe Rd - /	d _{0adi}		Α	SN _{eff}
Station	Direction	(mm)	d ₀ /d ₂₀₀	(mm)	(mm)
12.725	SBDL	0.183	1.12	661	269
12.751	NBPL	0.201	1.27	565	164
12.825	SBPL	0.191	1.22	594	217
12.850	NBDL	0.239	1.16	593	212
12.925	SBDL	0.267	1.14	608	216
12.950	NBPL	0.227	1.21	582	198
13.024	SBPL	0.178	1.17	641	239
13.050	NBDL	0.424	1.18	550	141
13.125	SBDL	0.444	1.14	571	146
13.150	NBPL	0.308	1.14	585	155
13.225	SBPL	0.104	1.12	744	378
13.251	NBDL	0.198	1.25	583	219
13.325	SBDL	0.204	1.12	647	246
13.350	NBPL	0.238	1.19	602	183
13.422	SBPL	0.197	1.15	643	213
13.450	NBDL	0.398	1.17	558	145
13.525	SBDL	0.320	1.15	594	160
13.550	NBPL	0.234	1.24	579	204
13.625	SBPL	0.203	1.12	650	232
13.650	NBDL	0.351	1.15	567	167
13.725	SBDL	0.439	1.17	553	144
13.750	NBPL	0.206	1.17	624	235
13.823	SBPL	0.217	1.16	619	222
13.850	NBDL	0.358	1.24	534	146
13.925	SBDL	0.348	1.14	591	156
13.950	NBPL	0.174	1.26	603	229
14.025	SBPL	0.188	1.11	668	274
14.050	NBDL	0.347	1.12	589	176
14.125	SBDL	0.292	1.16	576	178
14.151	NBPL	0.145	1.13	702	299
14.225	SBPL	0.193	1.14	649	232
14.250	NBDL	0.211	1.17	626	196
Mean		0.26	1.17	608	206
Standard Deviation		0.09	0.05	46	52
C.O.V (%)		35.02	3.87	8	25
Maximum		0.44	1.27	744	378
Minimum		0.10	1.11	534	141

 Table 2-A: FWD Data Analysis - Cawthra Road from 200 m North of Silver Creek to

 Burnhamthorpe Rd - All Lanes in both Directions (St 12+750 To 14+300).

Notes:

Station 10+000 is the South Side of the North Pedestrian Crossing at the Intersection of Cawthra Rd and S. Service Rd.

Meadows Bivd - All Lanes in both Directions (St 14+300 To 15+100).						
Station	Direction	d _{0adj} (mm)	d ₀ /d ₂₀₀	A (mm)	SN _{eff} (mm)	
14.325	SBDL	0.257	1.20	584	192	
14.350	NBPL	0.095	1.15	737	370	
14.425	SBPL	0.226	1.21	596	182	
14.450	NBDL	0.082	1.27	683	349	
14.525	SBDL	0.192	1.18	616	244	
14.550	NBPL	0.246	1.21	587	172	
14.625	SBPL	0.387	1.19	566	135	
14.651	NBDL	0.253	1.26	572	155	
14.725	SBDL	0.238	1.14	617	227	
14.750	NBPL	0.199	1.19	611	211	
14.825	SBPL	0.191	1.20	607	212	
14.850	NBDL	0.222	1.20	594	190	
14.925	SBDL	0.233	1.15	604	223	
14.950	NBPL	0.198	1.25	584	195	
15.025	SBPL	0.201	1.24	581	184	
15.050	NBDL	0.281	1.23	554	164	
Mean		0.22	1.20	606	213	
Standard Deviation		0.07	0.04	45	64	
C.O.V (%)		31.86	3.26	8	30	
Maximum		0.39	1.27	737	370	
Minimum		0.08	1.14	554	135	

Table 3-A: FWD Data Analysis - Cawthra Road from Burnhamthorpe Rd to Meadows Blvd - All Lanes in both Directions (St 14+300 To 15+100).

Notes:

Station 10+000 is the South Side of the North Pedestrian Crossing at the Intersection of Cawthra Rd and S. Service Rd.

Station	Direction	d _{0adj} (mm)	d ₀ /d ₂₀₀	A (mm)	SN _{eff} (mm)						
15.125	SBDL	0.278	1.24	545	181						
15.150	NBPL	0.129	1.23	648	295						
15.224	SBPL	0.091	1.15	735	359						
15.250	NBDL	0.308	1.19	559	182						
15.325	SBDL	0.174	1.19	625	248						
15.350	NBPL	0.183	1.14	657	258						
15.4	SBPL	0.170	1.12	706	258						
15.435	NBDL	0.083	1.35	665	349						
Me	ean	0.18	1.20	643	266						
Standard	Deviation	0.08	0.07	66	67						
C.O.V	V (%)	45.81	6.15	10	25						
Maxi	mum	0.31	1.35	735	359						
Mini	mum	0.08	1.12	545	181						

 Table 4-A: FWD Data Analysis - Cawthra Road from Meadows Blvd to Eastgate

 Parkway - All Lanes in both Directions (St 15+100 to 15+400).

Notes:

Station 10+000 is the South Side of the North Pedestrian Crossing at the Intersection of Cawthra Rd and S. Service Rd.

Appendix B: Backcalculated Pavement Layer Moduli

		Li	ayer Thickness, m	ım		Backcalculated La	ayer Moduli, MP	a	Corrected Subgrade
Station	Location	Asphalt	Concrete	Granular	Asphalt	Concrete	Granular	Subgrade	Resilient Modulus (M _{r),} MPa
10.000	NBDL	105	200	300	17531	27225	306	332	100
10.000	SBDL	105	200	300	10096	20572	141	198	59
10.015	SBPL	105	200	300	7873	33275	203	268	80
10.025	NBPL	105	200	300	13029	18093	293	264	79
10.025	SBDL	105	200	300	10794	25353	218	245	73
10.050	NBDL	105	200	300	10877	20632	332	282	84
10.100	SBPL	105	200	300	12957	12185	306	245	74
10.125	NBPL	105	200	300	14967	26093	192	147	44
10.125	SBDL	105	200	300	14451	22275	225	352	106
10.225	SBPL	105	200	300	3690	8678	171	346	104
10.230	NBPL	105	200	300	14525	22275	275	400	120
10.250	NBDL	105	200	300	13639	38250	146	213	64
10.395	SBDL	105	200	300	9239	18020	234	279	84
10.400	NBPL	105	200	300	10658	18043	198	295	88
10.425	SBPL	105	200	300	11347	29872	203	280	84
10.450	NBDL	105	200	300	9542	16691	203	284	85
10.525	SBDL	105	200	300	10176	23389	212	331	99
10.550	NBPL	105	200	300	14320	27225	303	328	98
10.623	SBPL	105	200	300	8845	15879	226	290	87
10.650	NBDL	105	200	300	9562	18819	223	414	124
10.725	SBDL	105	200	300	13382	28300	164	297	89
10.750	NBPL	105	200	300	7911	17130	216	298	89
10.825	SBPL	105	200	300	5277	14249	366	339	102
10.851	NBDL	105	200	300	5628	24750	192	303	91
10.925	SBDL	105	200	300	29513	22550	238	280	84
10.950	NBPL	105	200	300	16452	25338	171	252	76
11.025	SBPL	105	200	300	14022	27627	321	245	73
11.050	NBDL	105	200	300	4808	2441	207	269	81
11.125	SBDL	105	200	300	26006	24503	203	317	95
11.150	NBPL	105	200	300	10183	25338	214	330	99
11.225	SBPL	105	200	300	14897	22352	234	274	82
11.283	NBDL	105	200	300	15267	17954	172	164	49

Table 1-B: Backcalculated Layer Moduli - Cawthra Road from South Service Rd. to 200 m North of Silver Creek Blvd - All Lanes in both Directions (St 10+000 to 12+750).

o		Ŀ	ayer Thickness, m	ım		Backcalculated La	ayer Moduli, MP	a	Corrected Subgrade				
Station	Location	Asphalt	Concrete	Granular	Asphalt	Concrete	Granular	Subgrade	Resilient Modulus (M _{r),} MPa				
11.325	SBDL	105	200	300	4601	15288	138	216	65				
11.350	NBPL	105	200	300	9970	18311	288	257	77				
11.425	SBPL	105	200	300	14738	25217	310	317	95				
11.450	NBDL	105	200	300	4991	8678	360	274	82				
11.524	SBDL	105	200	300	8226	160	192	58					
11.550	NBPL	105	200	300	6071	34939	180	450	135				
11.625	SBPL	105	200	300	10054	17864	242	236	71				
11.665	NBDL	105	200	300	7544	62178	205	364	109				
11.725	SBDL	105	200	300	10071	24503	203	299	90				
11.750	NBPL	105	200	300	10391	24819	256	268	81				
11.825	SBPL	105	200	300	4940	34589	190	194	58				
11.850	NBDL	105	200	300	51473	24131	279	524	157				
11.925	SBDL	105	200	300	2584	24750	236	257	77				
11.950	NBPL	105	200	300	5925	19847	245	733	220				
12.025	SBPL	105	200	300	5454	38520	235	389	117				
12.053	NBDL	105	200	300	7374	13884	215	357	107				
12.125	SBDL	105	200	300	5117	24746	219	245	74				
12.150	NBPL	105	200	300	6445	31464	250	590	177				
12.226	SBPL	105	200	300	3957	29494	256	253	76				
12.250	NBDL	105	200	300	12309	21718	310	375	113				
12.325	SBDL	105	200	300	8686	22868	195	252	76				
12.350	NBPL	105	200	300	8085	25728	285	385	116				
12.424	SBPL	105	200	300	7612	39393	178	377	113				
12.455	NBDL	105	200	300	9860	17569	193	284	85				
12.525	SBDL	105	200	300	11127	26549	324	238	72				
12.550	NBPL	105	200	300	7995	19045	268	242	73				
12.625	SBPL	105	200	300	10426	18822	190	299	90				
12.650	NBDL	105	200	300	4535	14249	240	184	55				
12.725	SBDL	105	200	300	3469	7573	143	135	41				
		Average			9875	23036	226	282	85				
		Maximum			17531	39393	332	450	135				
		Minimum			2584	7573	138	135	41				

Table 1-B (Cont): Backcalculated Layer Moduli - Cawthra Road from South Service Rd. to 200 m North of Silver Creek Blvd - All Lanes in both Directions (St 10+000 to 12+750).

Notes:

Station 10+000 is the South Side of the North Pedestrian Crossing at the Intersection of Cawthra Rd and S. Service Rd.

Table 2-B: Backcalculated Layer Moduli - Cawthra Road from 200 m North of Silver Creek to Burnhamthorpe Rd - All Lanes in both Directions (St 12+750 To 14+300).

		Layer Thic	kness, mm	Backcalc	ulated Layer Mo	duli, MPa	Corrected Subgrade Resilient Modulus (M _{r)}					
Station	Location	Asphalt	Granular	Asphalt	Granular	Subgrade	– Resilient Modulus (M _{r),} MPa					
12.725	SBDL	175	405	12033	489	95	29					
12.751	NBPL	175	405	3539	295	256	77					
12.825	SBPL	175	405	5151	345	239	72					
12.850	NBDL	175	405	5764	238	166	50					
12.925	SBDL	175	405	6225	362	69	21					
12.950	NBPL	175	405	4501	322	152	46					
13.024	SBPL	175	405	8817	319	173	52					
13.050	NBDL	175	405	3420	125	59	18					
13.125	SBDL	175	405	6506	164	18	5					
13.150	NBPL	175	405	4845	160	86	26					
13.225	SBPL	175	405	41804	238	332	100					
13.251	NBDL	175	405	4645	444	210	63					
13.325	SBDL	175	405	10200	524	65	20					
13.350	NBPL	175	405	5796	236	118	35					
13.422	SBPL	175	405	9165	218	149	45					
13.450	NBDL	175	405	4083	118	66	20					
13.525	SBDL	175	405	5576	269	38	11					
13.550	NBPL	175	405	4308	361	143	43					
13.625	SBPL	175	405	9573	216	147	44					
13.650	NBDL	175	405	4241	150	85	26					
13.725	SBDL	175	405	3082	225	32	10					
13.750	NBPL	175	405	7490	295	158	47					
13.823	SBPL	175	405	7551	248	145	43					
13.850	NBDL	175	405	2910	198	83	25					
13.925	SBDL	175	405	5905	166	46	14					
13.950	NBPL	175	405	5535	482	222	67					
14.025	SBPL	175	405	12107	255	160	48					
14.050	NBDL	175	405	5328	127	80	24					
14.125	SBDL	175	405	3886	393	61	18					
14.151	NBPL	175	405	16449	316	210	63					
14.225	SBPL	175	405	10375	236	146	44					
14.250	NBDL	175	405	9204	197	135	41					
	Ave	rage		6413	258	126	38					
	Maxi	imum		16449	482	256	77					
	Mini	mum		2910	118	18	5					

Notes:

Station 10+000 is the South Side of the North Pedestrian Crossing at the Intersection of Cawthra Rd and S. Service Rd.

		Layer Thic	kness, mm	Backcalc	ulated Layer Mod	luli, MPa	Corrected Subgrade
Station	Location	Asphalt	Granular	Asphalt	Granular	Subgrade	Resilient Modulus (M _{r),} MPa
14.325	SBDL	140	460	8829	333	90	27
14.350	NBPL	140	460	36373	841	282	85
14.425	SBPL	140	460	8965	276	134	40
14.450	NBDL	140	460	12349	1869	456	137
14.525	SBDL	140	460	10931	481	144	43
14.550	NBPL	140	460	7804	248	120	36
14.625	SBPL	140	460	6184	127	61	18
14.651	NBDL	140	460	7296	260	108	32
14.725	SBDL	140	460	14343	268	98	30
14.750	NBPL	140	460	10198	311	167	50
14.825	SBPL	140	460	10295	334	178	53
14.850	NBDL	140	460	9878	276	141	42
14.925	SBDL	140	460	10087	367	110	33
14.950	NBPL	140	460	7356	386	169	51
15.025	SBPL	140	460	6492	363	163	49
15.050	NBDL	140	460	5841	254	115	35
	Ave	rage		8893	306	129	39
	Maxi	mum		14343	481	178	53
	Mini	mum		5841	127	61	18

Table 3-B: Backcalculated Layer Moduli - Cawthra Road from Burnhamthorpe Rd to Meadows Blvd - All Lanes in both Directions (St 14+300 To 15+100).

Notes:

Station 10+000 is the South Side of the North Pedestrian Crossing at the Intersection of Cawthra Rd and S. Service Rd.

Station	Location	Layer Thic	kness, mm	Backcalc	ulated Layer Mod	luli, MPa	Corrected Subgrade Resilient Modulus (M _{r).}
Station	Location	Asphalt	Granular	Asphalt	Granular	Subgrade	MPa
15.125	SBDL	300	375	1540	272	97	29
15.150	NBPL	300	375	4392	377	283	85
15.224	SBPL	300	375	8282	323	375	113
15.250	NBDL	300	375	1653	123	114	34
15.325	SBDL	300	375	3495	444	108	32
15.350	NBPL	300	375	3785	169	150	45
15.400	SBPL	300	375	4924	112	141	42
15.435	NBDL	300	375	5393	1085	559	168
	Ave	rage		3298	249	149	45
	Maxi	mum		4924	444	283	85
	Mini	mum		1540	112	97	29

Table 4-B: Backcalculated Layer Moduli - Cawthra Road from Meadows Blvd to Eastgate Parkway - All Lanes in both Directions (St 15+100 to 15+400).

Notes:

Station 10+000 is the South Side of the North Pedestrian Crossing at the Intersection of Cawthra Rd and S. Service Rd.

Appendix C: Calibration Certificate – FWD Machine

FWD Calibration

Date of Calibration:

01-May-2018

Calibration Center: Calibration Center Operator:

Signature

TMR Laslo Tot

FWD Owner: FWD Manufacturer FWD Model: FWD Serial Number FWD Operator: Engtec Dynatest 8082 8082-128 Glenn Black

Reference Load Cell:tmr001Reference Accelerometer:SN 26663WinFWDCal Software:Version 2.2.12

LOAD CELL CALIBRATION

Serial	Initial Gain	Referen	ice Gains	Average Gain	Final Gain
Number		1	2		
957	0.984	0.991	0.989	0.990	0.990

DEFLECTION SENSOR CALIBRATION

Serial	Initial	Reference Gains	Relative Gains	Final
Number	Gain	1 2	1 2	Gain
7511	0.997	0.997 0.997	0.994 0.994	0.994
7512	0.997	0.993 0.993	0.989 0.990	0.989
7513	0.997	0.992 0.992	0.991 0.991	0.991
7514	0.993	0.990 0.990	0.990 0.989	0.990
7515	0.997	0.993 0.993	0.992 0.992	0.992
7516	0.995	0.992 0.992	0.992 0.992	0.992
7886	0.994	0.995 0.995	1.000 0.999	0.999
7518	0.998	0.995 0.995	0.997 0.997	0.997
7519	0.992	0.987 0.987	0.992 0.992	0.992

Messages: Load Cell: All data checks passed Sensor Reference Calibration: Reference Calibrations Accepted. Reference Trial Acceptance Criteria Met. Sensor Relative Calibration: Sensor Calibration Completed! Final Acceptance Criteria are met for all sensors.

APPENDIX E Flexible Pavement Condition Evaluation Forms

Ministry of Transportation

😵 Ontario

Composite Pavement Condition Evaluation Form

Loc	ation:					Caw	thra	Roa	d								_ Dis	strict		Hig	ghw	ay			Π					
Fro	m:	Station 9	9+960			-	To:					Sta	ation	10+	-830								!]						
LH	IRS	begins	offse	et		km		Se	ectic	on L	eng	jth			8	7 0 m		iffic ectic	on B E-	east	bour	nd; V	V - w	vestk	boun	d	d; S -		hbou	und;
Su	irvey Date		0 8 nonth	РС	R		9	5		RC	R	9		5]		Fac	cility		all la othe						· exp	ress;			
Co	ntract No.			w	P N	о.											Cla	ISS		freev seco			arteri	ial; (2 - c	ollec	tor; L	loc	al;	
		37			S	everit	y of E	Distre	ess		ensity ent of						Sh	nould	ders			Le	eft					Righ	nt	
	ide ondition	8	Excellent (smooth Good (comfortable		Ħ		e		ere	Mé	Intermittent	Frequent	Extensive	Throughout	1 [Surface	Width	E?	Distress	S	everi	ty		currer %		S	everity	, (nsity rrence, %
	ating		Fair (uncomfortabl	e)	Slight	Slight	Moderate	Severe	Very Severe	Few	iterm	Freq	Exter	hrou		Surrace	wiath	NO	Distress	Light	Med	Sever	<10	10-30	>30		MedSe	ever <	10 10	-30 >30
(a	at 80 km/hr)	-4	Poor (v. rough/bum		Very	S	Mod	Se	ery :											2	3	4	2	3	4	2	3	4	2 3	3 4
			Very Poor, (dangero at 80 km/hr)	ous,	[>	<10	10-20	20-50	50-80	80-100		-	Fully		Cracking						'					
		DAVEMENT							_							Concrete	Partially		Pave Edge/Curb Seperation						 '					
		PAVEMENT Ravelling & C			1 √	2	3	4	5	1	2	3	4	5			Paved		Distortion Cracking					┟╌╌┙	 '	4				
	Surface	Flushing	. Agg. Loss	1 2	<u> </u>											Hot-mix	Fully Partially		Pave Edge/Curb Seperation	·										
	Defects	Spalling		3													Paved		Distortion						{ ∤'					
		Tenting/Cupp	ping	4													Fully		Cracking					┟╌╶╼┥						
	Surface	Wheel Track		5												Surface	Partially		Pave Edge/Curb Seperation											
	Deformations	Distortion & S		6											r i i i i i i i i i i i i i i i i i i i	Treated	Paved		Break-Up											
		Joint Failures	;	7		†											Fully		•											
	Longitudinal,	Meandering - Singl	e and Midlane	8												Primed	Partially		Break-Up											
	Centre Line - S			9												Gra	vel								,U					
NZ	Centre Line - N			10		 									-				-											
Х	Diag./Corner/E	dge Cres Single	e & Multiple	11		[1			Mai	ntononoo				E	IJTX	NT O	F OC	CURF	RENC	E, %	
CRACKING	Transverse - S	Single		12		T													ntenance eatment			<	10	10	-20	20-	50	50-80	0	>80
	Transverse - N	Nultiple		13														110	eatment				1	1	2	3	\$	4		5
	Map - Single 8	Multiple		14											ון		Manual F	Patchi	ing, Hot or Cold Mix											
т	ransverse Joints	Sawed		15													Machine	Patcl	hing, Partial/Fill Width]]			
		Reflective		16												Pavement	Microsur	facino	g]					
																avenient	Grooving]]]					
																			I Cracks or Joints]					
																	Concrete	Join	t / Slab Replacement					1						

Distress Comments: (items not covered above)

Other Comments: (e.g., subsections, additional contracts)

Spray Patching / Chip Seal Sealing Cracks or Joints

Manual Patching, Hot or Cold Mix Machine Patching, Partial or Fill Width

Evaluated by: Rehman Abdul. P.Eng.

Shoulders

Ministry of Transportation

Composite Pavement Condition Evaluation Form

ଚ୍ଚ	Ontario
(0)	Unitario

Loc	ation:	Cawthra Road											District Highway																		
Fro	m:	Station 10+830				To:					Sta	ation	11	+500		-								44							
LH	IRS	begins offse			km		Se	ctic	on L	eng	th			6	7 0 m		ffic ectio	B						N - nc westb			J; S -	- SOU	ithbo	ounc	l;
Su	rvey Date	1 9 0 8 year month	PC	R		7	0		RC	R [7		0]		Fac	cility	/ А	0 -	- oth	ers (addit	iona	ector I lane	es)						
Co	ntract No.		w	ΡN	о.					ļ						Cla	ISS	А			way onda		arter	rial; C) - C	ollec	tor; L	lo	cal;		
		30 - 20 Z		Se	everit	y of [Distre	SS				Distre urrenc		1		Sh	noul	ders				L	eft					Rig	ht		Π
	ide ondition	Excellent (smooth 8 Good (comfortable	,	rt		0		ere	×	ittent	lent	Isive	ghout		Quertes a	M. 10.	E?	Distan		;	Seve	rity		Densit curren %	-	Se	everity	у	De Occu	ensity urren %	
R	ating at 80 km/hr)	Fair (uncomfortabl	,	/ Slight	Slight	Moderate	Severe	Severe	Few	Intermittent	Frequent	Extensive	Throughout		Surface	Width	ONE,	Distre	S	_	nt Med	-	_	10-30		-	Med		_	0-30	>30
(a	a ou kiii/iii)	Poor (v. rough/bum 2 Very Poor, (dangero		Very	S	Mo	Š	Very	0					-		Fully		Cracking		2	3	4	2	3	4	2	3	4	2	3	4
		at 80 km/hr)							<10	10-20	20-50	50-80	80-100		Concrete	Partially Paved		Pave Edge/Curb S	eperation	†						r===					
		PAVEMENT Ravelling & C. Agg. Loss	1	1	2 √	3	4	5	1	2	3 ✓	4	5	-		Faveu		Distortion Cracking							·						
	Surface	Flushing	2		- `									-	Hot-mix	Partially		Pave Edge/Curb S	eperation	╉╌╌		<u> </u>									
	Defects	Spalling	3		~					~				"		Paved		Distortion		1	1	1									
		Tenting/Cupping	4			~				~]	Surface	Fully		Cracking]]]]										
	Surface	Wheel Track Rutting	5												Treated	Partially		Pave Edge/Curb S	eperation												
	Deformations	Distortion & Settlement	6													Paved		Break-Up													
		Joint Failures	7											4	Primed	Fully		Break-Up						ll							
		leandering - Single and Midlane	8			<u>~</u>				<u> </u>						Partially															
Q	Centre Line - Si Centre Line - M		9											.	Grave) I]													
CRACKING		dge Cres Single & Multiple	10 11																			1		XTEN			CLIP		~ 0	/.	
RAC	Transverse - Si		12			·				~							Mai	intenance					L 10	10-		20-		50-8		~~ >8	20
Ъ	Transverse - M		13			·				··				-			Tr	eatment				-	10	10-		20=		4		-0	
	Map - Single &		14													Manual F	Patch	ning, Hot or Cold	Mix				İ	<u> </u>	-	Ī	\rightarrow	Ť		Ĩ	
		Sawed	15															ching, Partial/Fill													
Т	ransverse Joints	Reflective	16			~					~			"	_	Microsur															
		•		•									•	-	Pavement	Grooving						1	1								
																Rout and	l Sea	al Cracks or Joint	;			1	1	(i			-	†-	1		
																Concrete	e Join	nt / Slab Replace	nent			1	[
																Manual F	Patch	ning, Hot or Cold	Mix											_	

Other Comments: (e.g., subsections, additional contracts)

Spray Patching / Chip Seal Sealing Cracks or Joints

Machine Patching, Partial or Fill Width

Evaluated by: Rehman Abdul. P.Eng.

Shoulders

Distress Comments: (items not covered above)

Ministry of Transportation

Composite Pavement Condition Evaluation Form

ଚ୍ଚ	Ontario
(0)	Unitario

Loc	ation:				Caw	thra	Roa	d								Dis	trict	t 🗌		н	ighw	/ay		Π							
Fro	m:	Station 11+500				To:					Sta	ation	12-	+750					•I					<u>ا ا</u>							
LH	IRS	begins offs			km		Se	ctic	n L	eng	th		1	2	50 m	Tra Dire	ffic ectio	on B						N - nc westb			J; S -	- SOU	ithbo	ounc	l;
Su	rvey Date	1 9 0 8 year month	PC	R		8	0		RCI	R [8		0]		Fac	ility	A	0.	- oth	ers (addit	iona	ector al lane	es)						
Co	ntract No.		W	'P N	о.											Cla	SS	А			way onda		arter	rial; C) - C	ollect	tor; L	lo	cal;		
		3/- 2		Se	everit	y of E	Distre	SS				Distre Irrence]		Sh	oul	ders				L	eft					Rig	ht		
	ide ondition	B Excellent (smooth 8 Good (comfortable		٦t		đ		ere	×	ittent	lent	Isive	ghout]	Querta a s	14 /2 .1/1	E?	Dista		:	Seve	rity		Densit curren %	-	Se	everity	у	De Occu	ensity urren %	
R	ating at 80 km/hr)	Fair (uncomfortabl	,	/ Slight	Slight	Moderate	Severe	Severe	Few	Intermittent	Frequent	Extensive	Throughout		Surface	Width	ONE,	Distr	ess	_	nt Med	-	_	10-30		-	Med			0-30	>30
(8	it ou km/nr)	Poor (v. rough/bum 2 Very Poor, (dangero		Very	S	Mo	Š	Very	0							Fully		Cracking		2	3	4	2	3	4	2	3	4	2	3	4
		0 at 80 km/hr)							<10	10-20	20-50	50-80	80-100		Concrete	Partially		Pave Edge/Curb	Seperation	_	 				·	-					
		PAVEMENT		1 ✓	2	3	4	5	1	2	3	4	5	-		Paved		Distortion						l	r===	·					
	Surface	Ravelling & C. Agg. Loss Flushing	1 2						. <u>`</u> .						Hot-mix	Fully Partially		Cracking Pave Edge/Curb	Seperation												
	Defects	Spalling	3		~				~						THOU THIN	Paved		Distortion	Coporation			<u> </u>									
		Tenting/Cupping	4		~				~						0	Fully		Cracking													
	Surface	Wheel Track Rutting	5												Surface Treated	Partially		Pave Edge/Curb	Seperation]]]									
	Deformations	Distortion & Settlement	6													Paved		Break-Up			_					.					
		Joint Failures	7											-	Primed	Fully		Break-Up				 		ll	·	·					
		leandering - Single and Midlane	8	 	<u> </u>				<u> </u>					-	Grave	Partially								ш		ш					
ğ	Centre Line - S Centre Line - M		9 10											- I	Grave	1]													
CRACKING		dge Cres Single & Multiple	11											- I								Г	E	XTEN		F OC	CUR	REN	CE. %	6	
RAC	Transverse - Si		12		~					~								ntenance				<	10	10-		20-		50-8		° >8	30
O	Transverse - M	ultiple	13														Tr	eatment					1	2	2	3	;	4		5	;
	Map - Single &	Multiple	14													Manual F	Patch	ing, Hot or Cold	Mix												
Т	ransverse Joints	Sawed	15]		Machine	Patc	hing, Partial/Fil	Width						\checkmark						
		Reflective	16		~					✓]	Pavement	Microsur	facin	g													
															i avoinont	Grooving]		[[
																		I Cracks or Joir				 		 		·					
																		nt / Slab Replac				<u> </u>		\square		$ \rightarrow$	\rightarrow	\rightarrow	\dashv		
																ivianuai F	atch	ing, Hot or Cold	IVIIX					1 1							

Distress Comments: (items not covered above)

Other Comments: (e.g., subsections, additional contracts)

Spray Patching / Chip Seal Sealing Cracks or Joints

Machine Patching, Partial or Fill Width

Evaluated by: Rehman Abdul. P.Eng.

Shoulders

Flexible Pavement Condition Evaluation Form

Ministry of Transportation

Ø	Ontario
---	---------

Loc	ation:				Caw	thra	Roa	d									District		Hig	ghway					
Fror	n:	Station 12+750			_	To:					Sta	ation	14-	+220		_			ł	I					
LH	rs				km		Se	ectio	on L	.enç	gth		1	4	70 m	Ī	Traffic Direction	в		directior bound; V			d; S - so	uthboun	d;
Su	rvey Date	begins offs 1 9 0 8 year month 1 1 1	PC	R		7	0		RC	R	7		0]			Facility	A		nes; C - rs (additi			ress;		
Со	ntract No.		W	/P N	о.												Class	А	F - freev S - seco	vay; A - a ondary	arterial; (C - collec	tor; L - Ic	ocal;	
		Excellent (smoot	h)	-	everit	y of I	Distre	1		ent of	y of D Occu	rrence	e %		s	hou	Ilders		Seve Dist	-			ensity of nt of Oco		
	de	Good (comfortab		Slight	Ħ	ate	e	Very Severe	N	Intermittent	lent	Extensive	Throughout					Ri	ght	Le	eft	Rig	ght	Le	eft
	ondition ating	Fair (uncomfortab	le)	Very S	Slight	Moderate	Severe	y Se	Few	erm	Frequent	xten	roug		Dominant		Distress	Mod.	Sev.	Mod.	Sev.	10-30	>30	10-30	>30
(a	t 80 km/hr)	Poor (v. rough/bun	ipy)	< <		Ň	0	Ver		Int	ш	Ш	ЧЦ		Туре			1	2	1	2	1	2	1	2
		Very Poor, (danger	ous,						<10	10-20	50	50-80	100	1	Paved		Cracking								
		└── ⁰ at 80 km/hr)							7	10-	20-50	50-	80-100		Full		Pavement Edge/								
		PAVEMENT		1	2	3	4	5	1	2	3	4	5]	Paved		Curb Separation								
	Surface	Ravelling & C. Agg. Loss	1		✓								~]	Partial		Distortion								
	Defects	Flushing	2												Surface		Breakup/Separtion								
	Quiters	Rippling and Shoving	3]	Treated		Edge Break								
	Surface Deformations	Wheel Track Rutting	4		~					~					Primed		Breakup/Separtion								
	Determanene	Distortion	5		✓					~]	Gravel										
	Longitudinal	Single and Multiple	6		✓							<													
	Wheel Track	Alligator	7		✓					✓						Aair	ntenance			EXT	ENT OF C	OCCURRE	NCE, %		
	Centre Line	Single and Multiple	8		~								~				atment		<10	10-20) :	20-50	50-80		>80
U		Alligator	9		✓				✓										1	2		3	4		5
CRACKING	Pavement	Single and Multiple	10														Manual Patching		~						
RAC	Edge	Alligator	11											1			Machine Patching		~						
ō	Transverse	Half, Full and Multiple	12		~							~			Pavement		Spray Patching								
	Tranovoroo	Alligator	13														Rout and Seal Crack	s							
	Longitudinal Me	ander and Midlane	14														Chip Seal								
·	Random / Map		15]			Manual Patching								
														-	Shoulders		Machine Patching								
Dict	ross Commont	s: (items not covered above)													Shoulders	I	Rout and Seal Crack	S							
Dist	iess comment													_			Chip Seal								
														_	Other Comme	nts:	(e.g., subsections, a	dditional	contracts)						

Evaluated by: Rehman Abdul. P.Eng.

Flexible Pavement Condition Evaluation Form

Ministry of Transportation

Ø	Ontario
---	---------

Loca	ation:				Caw	/thra	Roa	d									District		Hig	ghway					
Fror	m:	Station 14+220			-	To:					Sta	ition	15	+460			Traffic		I B - both	directior	ns: N - n	orthhoun	d: S - soi	ithhound	ط۰
LH	RS	begins offs	ot		km		Se	ectio	on L	eng	gth		1	2	4 0 m	l	Direction	В		bound; V			u, O 00		а,
Su	rvey Date	1 9 0 8 year month	PC	R		9	0]	RC	R	9		0]			Facility	А		ines; C - ers (additi			ress;		
Со	ntract No.		w	/P N	о.												Class	А	F - freev S - seco	way; A - a ondary	arterial; (C - collec	tor; L - Ic	ocal;	
		Excellent (smoot	-)	S	everi	ty of [Distre	ess			y of D Occu		e %]	s	hou	Iders			rity of ress			ensity of nt of Oco		
	de	Good (comfortabl		Slight		ate	Ð	/ere		tent	ent	ive.	Throughout					Ri	ght	Le	oft	Rig	aht	Le	oft
	ondition ating	Fair (uncomfortab		y Sli	Slight	Moderate	Severe	Very Severe	Few	Intermittent	Frequent	Extensive	lguo		Dominant		Distress	Mod.	Sev.	Mod.	Sev.	10-30	>30	10-30	>30
	t 80 km/hr)	- 4 Poor (v. rough/bur	,	Very \$	0)	Мо	Ň	Very		Inte	Ъ	ш	Thr		Туре		21011000	1	2	1	2	1	2	10 00	2
		Very Poor, (danger						-	0	0	0	õ	8		Paved		Cracking	-	_	-	_			-	
		L 0 at 80 km/hr)							<10	10-20	20-50	50-80	80-100		Full		Pavement Edge/								
		PAVEMENT		1	2	3	4	5	1	2	3	4	5		Paved		Curb Separation								
	Surface	Ravelling & C. Agg. Loss	1	~						~					Partial		Distortion								
	Defects	Flushing	2												Surface		Breakup/Separtion								
		Rippling and Shoving	3												Treated		Edge Break								
	Surface Deformations	Wheel Track Rutting	4												Primed		Breakup/Separtion								
	Deformations	Distortion	5												Gravel										
	Longitudinal	Single and Multiple	6	~					~								•								
	Wheel Track	Alligator	7	1												10:0	tenance			EXT	ENT OF C	OCCURRE	NCE, %		
	Centre Line	Single and Multiple	8												N		atment		<10	10-20) :	20-50	50-80		>80
сı	Centre Line	Alligator	9]			atment		1	2		3	4		5
CRACKING	Pavement	Single and Multiple	10														Manual Patching								
RAC	Edge	Alligator	11]			Machine Patching								
IJ	Transverse	Half, Full and Multiple	12	~					~						Pavement		Spray Patching								
	Transverse	Alligator	13													F	Rout and Seal Crack	s							
	Longitudinal Mea	ander and Midlane	14														Chip Seal								
r	Random / Map		15														Manual Patching								
-			-		-	-		-					-	-	Chaulders		Machine Patching				1				
		(the second second second													Shoulders	F	Rout and Seal Crack	s							
DISt	ress comments	s: (items not covered above)															Chip Seal				1				
														_	Other Comme	nts:	(e.g., subsections, a	additional	contracts)						

Evaluated by: Rehman Abdul. P.Eng.

APPENDIX F Pavement Design Data

Table F1Cawthra Road0.1 Km North of Tedwyn DriveRegional Municipality Of PeelEquivalent Single Axle Load Calculations (Commercial Vehicle Data)

Description - Cawthra Road (0.1 Km North of Tedwyn Driv	ve)		
Traffic Data Year	2018	2019	2034
Design Year		2019	
Analysis Period	1	15	
1a) Average Annual Daily Truck Traffic (AADTT)	1,976	1,992	2,255
Annual Growth Rate (%)	0.83%	0.83%	
1b) Truck fraction of total traffic		100.0%	
Number of lanes in one direction		2	
1c) Directional Factor		0.5	
1d) Lane distribution Factor		0.8	
Daily	/ Truck Volume	797	
2) Breakdown of Truck Portions (10 Classes)		2019 to 2034	
	FHWA Vehicle Class 4	9.3%	
	FHWA Vehicle Class 5	28.9%	
	FHWA Vehicle Class 6	13.7%	
	FHWA Vehicle Class 7	18.1%	
	FHWA Vehicle Class 8	10.2%	
	FHWA Vehicle Class 9	5.8%	
	FHWA Vehicle Class 10	3.8%	
	FHWA Vehicle Class 11	0.4%	
	FHWA Vehicle Class 12	0.2%	
	FHWA Vehicle Class 13	9.7%	
3) Truck Factors (10 Classes)			
o,	FHWA Vehicle Class 4	2.0	
	FHWA Vehicle Class 5	0.3	
	FHWA Vehicle Class 6	0.9	
	FHWA Vehicle Class 7	4.0	
	FHWA Vehicle Class 8	1.1	
	FHWA Vehicle Class 9	1.6	
	FHWA Vehicle Class 10	4.0	
	FHWA Vehicle Class 11	1.0	
	FHWA Vehicle Class 12	4.3	
	FHWA Vehicle Class 13	5.6	
4) Total Daily ESALs in Design Lane		1617	
5) Total Base Year ESALs		2019	
Number of Days of Truck Traffic		300	
Тс	otal Base Year ESALs	485,100	
6) Cumulative ESALs for Design Period			
Design Period		15	
Annual Growth Rate (%)		0.83%	
Geometric Growth Factor		16.0	
Cumulative ESALs	for the Design Period	7,761,600	

Table F1aCawthra Road0.1 Km North of Tedwyn DriveRegional Municipality Of PeelEquivalent Single Axle Load Calculations (AADT DATA)

Description - Cawthra Road (0.1 Km North of Te	dwyn Drive)			
Traffic Data Year	•	2018	2019	2034
Design Year			2019	
Analysis Period		1	15	
1a) Average Annual Daily Traffic (AADT)		32,969	33,243	37,631
Annual Growth Rate (%)		0.83%	0.83%	
1b) Truck fraction of total traffic			5.5%	
Number of lanes in one direction			2	
1c) Directional Factor			0.5	
1d) Lane distribution Factor			0.8	
Daily Tru	ick Volume		732	
Road Classification		Urba	n Principal Ar	terial
2) Deschalerum of Truck Descentions				
2) Breakdown of Truck Proportions	Class 1		30.0%	
	Class 1 Class 2		30.0% 10.0%	
	Class 2 Class 3		45.0%	
	Class 3 Class 4		45.0%	
	Class 4		13.070	
3) Daily Truck Volumes (4 Classes)			2019 to 2034	
	Class 1		220	
	Class 2		73	
	Class 3		329	
	Class 4		110	
4) Truck Factors (4 Classes)				
	Class 1		0.5	
	Class 2		2.3	
	Class 3		1.6	
5) Deily 52AL a new Truck Class (4 Classes)	Class 4		5.5	
5) Daily ESALs per Truck Class (4 Classes)	Class 1		110	
	Class 1 Class 2		168	
	Class 2 Class 3		527	
	Class 3 Class 4		604	
6) Total Daily ESALs in Design Lane	Class 4		1410	
o) Total Daily ESALS in Design Lane			1410	
7) Total Base Year ESALs			2019	
Number of Days of Truck Traffic			300	
Total	Base Year ESALs		423,000	
8) Cumulative ESALs for Design Period				
Design Period			15	
Annual Growth Rate (%)			0.83%	
Geometric Growth Factor			16.0	
			6,768,000	
Cumulative ESALs for	the Design Period		6,768,000	

Note: ESAL Calculations are based on "Procedures for Estimating Traffic Loads for Pavement Design", Hajek, J., 1995, and "Adaptation and Verification of AASHTO Pavement Design Guide for Ontario Conditions" (MI-83), 2008.

Table F2Cawthra Road0.2 Km North of Queensway EastRegional Municipality Of PeelEquivalent Single Axle Load Calculations (Commercial Vehicle Data)

Description - Cawthra Road (0.2 Km North of Quee	ensway East)		
Traffic Data Year	2018	2019	2039
Design Year		2019	
Analysis Period	1	15	
1a) Average Annual Daily Truck Traffic (AADTT)	2,329	2,348	2,658
Annual Growth Rate (%)	0.83%	0.83%	
1b) Truck fraction of total traffic		100.0%	
Number of lanes in one direction		2	
1c) Directional Factor		0.5	
1d) Lane distribution Factor		0.8	
	Daily Truck Volume	940	
2) Breakdown of Truck Portions (10 Classes)		2019 to 2034	
, , , , , , , , , , , , , , , , , , , ,	FHWA Vehicle Class 4	10.5%	
	FHWA Vehicle Class 5	32.7%	
	FHWA Vehicle Class 6	13.8%	
	FHWA Vehicle Class 7	21.3%	
	FHWA Vehicle Class 8	13.5%	
	FHWA Vehicle Class 9	3.4%	
	FHWA Vehicle Class 10	1.5%	
	FHWA Vehicle Class 11	0.2%	
	FHWA Vehicle Class 12	0.0%	
	FHWA Vehicle Class 13	3.1%	
3) Truck Factors (10 Classes)			
-,	FHWA Vehicle Class 4	2.0	
	FHWA Vehicle Class 5	0.3	
	FHWA Vehicle Class 6	0.9	
	FHWA Vehicle Class 7	4.0	
	FHWA Vehicle Class 8	1.1	
	FHWA Vehicle Class 9	1.6	
	FHWA Vehicle Class 10	4.0	
	FHWA Vehicle Class 11	1.0	
	FHWA Vehicle Class 12	4.3	
	FHWA Vehicle Class 13	5.6	
4) Total Daily ESALs in Design Lane		1619	
5) Total Base Year ESALs		2019	
, Number of Days of Truck Traffic		300	
-	Total Base Year ESALs	485,700	
6) Cumulative ESALs for Design Period			
Design Period		15	
Annual Growth Rate (%)		0.83%	
Geometric Growth Factor		16.0	

Table F2a Cawthra Road 0.2 Km North of Queensway East Regional Municipality Of Peel Equivalent Single Axle Load Calculations (AADT DATA)

Description - Cawthra Road (0.2 Km Nort	th of Queensway East)			
Traffic Data Year		2018	2019	2034
Design Year			2019	
Analysis Period		1	15	
1a) Average Annual Daily Traffic (AADT)		35,583	35,878	40,614
Annual Growth Rate (%)		0.83%	0.83%	
1b) Truck fraction of total traffic			6.0%	
Number of lanes in one direction			2	
1c) Directional Factor			0.5	
1d) Lane distribution Factor			0.8	
D	aily Truck Volume		862	
Road Classification		Urba	n Principal Ar	terial
2) Breakdown of Truck Proportions				
,	Class 1		30.0%	
	Class 2		10.0%	
	Class 3		45.0%	
	Class 4		15.0%	
3) Daily Truck Volumes (4 Classes)			2019 to 2034	
, , , ,	Class 1		259	
	Class 2		86	
	Class 3		388	
	Class 4		129	
4) Truck Factors (4 Classes)				
	Class 1		0.5	
	Class 2		2.3	
	Class 3		1.6	
5) Deily FOAL a new Truck Class (4 Class	Class 4		5.5	
5) Daily ESALs per Truck Class (4 Classe	Class 1		129	
	Class 1 Class 2		129	
	Class 2 Class 3		621	
	Class 4		711	
6) Total Daily ESALs in Design Lane			1660	
7) Total Base Year ESALs			2019	
Number of Days of Truck Traffic			300	
	Total Base Year ESALs		498,000	
8) Cumulative ESALs for Design Period				
Design Period			15	
Annual Growth Rate (%)			0.83%	
Geometric Growth Factor			16.0	
			7,968,000	
Cumulative ESA	ALs for the Design Period		7,968,000	

Note: ESAL Calculations are based on "Procedures for Estimating Traffic Loads for Pavement Design", Hajek, J., 1995, and "Adaptation and Verification of AASHTO Pavement Design Guide for Ontario Conditions" (MI-83), 2008.

Table F3Cawthra Road0.5 Km North of Silver Creek BoulevardRegional Municipality Of PeelEquivalent Single Axle Load Calculations (Commercial Vehicle Data)

Description - Cawthra Road (0.5 Km North of Silver Cre	eek Boulevard)		
Traffic Data Year	2018	2019	2034
Design Year		2019	
Analysis Period	1	15	
1a) Average Annual Daily Truck Traffic (AADTT)	2,493	2,514	2,845
Annual Growth Rate (%)	0.83%	0.83%	
1b) Truck fraction of total traffic		100.0%	
Number of lanes in one direction		2	
1c) Directional Factor		0.5	
1d) Lane distribution Factor		0.8	
D	aily Truck Volume	1006	
2) Breakdown of Truck Portions (10 Classes)		2019 to 2034	
	FHWA Vehicle Class 4	8.4%	
	FHWA Vehicle Class 5	23.7%	
	FHWA Vehicle Class 6	13.7%	
	FHWA Vehicle Class 7	26.4%	
	FHWA Vehicle Class 8	14.2%	
	FHWA Vehicle Class 9	3.8%	
	FHWA Vehicle Class 10	2.1%	
	FHWA Vehicle Class 11	0.1%	
	FHWA Vehicle Class 12	0.0%	
	FHWA Vehicle Class 13	7.8%	
3) Truck Factors (10 Classes)			
-,	FHWA Vehicle Class 4	2.0	
	FHWA Vehicle Class 5	0.3	
	FHWA Vehicle Class 6	0.9	
	FHWA Vehicle Class 7	4.0	
	FHWA Vehicle Class 8	1.1	
	FHWA Vehicle Class 9	1.6	
	FHWA Vehicle Class 10	4.0	
	FHWA Vehicle Class 11	1.0	
	FHWA Vehicle Class 12	4.3	
	FHWA Vehicle Class 13	5.6	
4) Total Daily ESALs in Design Lane		2167	
5) Total Base Year ESALs		2019	
Number of Days of Truck Traffic		300	
	Total Base Year ESALs	650,100	
6) Cumulative ESALs for Design Period			
Design Period		15	
Annual Growth Rate (%)		0.83%	
Geometric Growth Factor		16.0	
	Ls for the Design Period	10,401,600	
	-		

Table F3a Cawthra Road 0.5 Km North of Silver Creek Boulevard Regional Municipality Of Peel Equivalent Single Axle Load Calculations (AADT DATA)

Description - Cawthra Road (0.5 Km North of Silver Cre	ek Boulevard))		
Traffic Data Year		2018	2019	2034
Design Year			2019	
Analysis Period		1	15	
1a) Average Annual Daily Traffic (AADT)		37,226	37,535	42,490
Annual Growth Rate (%)		0.83%	0.83%	
1b) Truck fraction of total traffic			6.1%	
Number of lanes in one direction			2	
1c) Directional Factor			0.5	
1d) Lane distribution Factor			0.8	
Daily Truck Volu	Ime		916	
Road Classification		Urba	n Principal Ar	terial
2) Breakdown of Truck Proportions				
-	Class 1		30.0%	
	Class 2		10.0%	
	Class 3		45.0%	
	Class 4		15.0%	
3) Daily Truck Volumes (4 Classes)			2019 to 2034	
	Class 1		275	
	Class 2		92	
	Class 3		412	
	Class 4		137	
4) Truck Factors (4 Classes)				
	Class 1		0.5	
	Class 2		2.3	
	Class 3		1.6	
	Class 4		5.5	
5) Daily ESALs per Truck Class (4 Classes)	Class 1		137	
	Class 1 Class 2		211	
	Class 2 Class 3		660	
	Class 4		756	
6) Total Daily ESALs in Design Lane			1764	
7) Total Page Vegr ESAL			2040	
7) Total Base Year ESALs Number of Days of Truck Traffic			2019 300	
Total Base Y	ear ESALs		529,200	
8) Cumulative ESALs for Design Period			4 -	
Design Period			15	
Annual Growth Rate (%)			0.83%	
Geometric Growth Factor			16.0 8 467 200	
Cumulativa ESAL a far the Dea	ian Poriod		8,467,200 8,467,200	
Cumulative ESALs for the Des	igii renou		0,407,200	

Note: ESAL Calculations are based on "Procedures for Estimating Traffic Loads for Pavement Design", Hajek, J., 1995, and "Adaptation and Verification of AASHTO Pavement Design Guide for Ontario Conditions" (MI-83), 2008.

Table F4Cawthra Road0.2 Km North of Bloor StreetRegional Municipality Of PeelEquivalent Single Axle Load Calculations (Commercial Vehicle Data)

Traffic Data Year	t) 2018	2019	2034
Design Year		2019	
Analysis Period	1	15	
1a) Average Annual Daily Truck Traffic (AADTT)	2,306	2,325	2,632
Annual Growth Rate (%)	0.83%	0.83%	
b) Truck fraction of total traffic		100.0%	
Number of lanes in one direction		2	
Ic) Directional Factor		0.5	
Id) Lane distribution Factor		0.8	
	ly Truck Volume	931	
		2040 4- 2024	
P) Breakdown of Truck Portions (10 Classes)		2019 to 2034	
	FHWA Vehicle Class 4	7.3%	
	FHWA Vehicle Class 5	30.5%	
	FHWA Vehicle Class 6	12.0%	
	FHWA Vehicle Class 7	24.6%	
	FHWA Vehicle Class 8	15.4%	
	FHWA Vehicle Class 9	3.9%	
	FHWA Vehicle Class 10	1.9%	
	FHWA Vehicle Class 11	0.3%	
	FHWA Vehicle Class 12	0.0%	
	FHWA Vehicle Class 13	4.1%	
3) Truck Factors (10 Classes)			
	FHWA Vehicle Class 4	2.0	
	FHWA Vehicle Class 5	0.3	
	FHWA Vehicle Class 6	0.9	
	FHWA Vehicle Class 7	4.0	
	FHWA Vehicle Class 8	1.1	
	FHWA Vehicle Class 9	1.6	
	FHWA Vehicle Class 10	4.0	
	FHWA Vehicle Class 11	1.0	
	FHWA Vehicle Class 12	4.3	
	FHWA Vehicle Class 13	5.6	
4) Total Daily ESALs in Design Lane		1742	
5) Total Base Year ESALs		2019	
, Number of Days of Truck Traffic		300	
-	otal Base Year ESALs	522,600	
6) Cumulative ESALs for Design Period			
Design Period		15	
Annual Growth Rate (%)		0.83%	
Geometric Growth Factor		16.0	
Cumulative ESALs	for the Design Period	8,361,600	

Table F4a Cawthra Road 0.2 Km North of Bloor Street Regional Municipality Of Peel Equivalent Single Axle Load Calculations (AADT DATA)

Description - Cawthra Road (0.2 Km North of	Bloor Street)			
Traffic Data Year	,	2018	2019	2034
Design Year			2019	
Analysis Period		1	15	
1a) Average Annual Daily Traffic (AADT)		33,911	34,192	38,706
Annual Growth Rate (%)		0.83%	0.83%	
1b) Truck fraction of total traffic			6.2%	
Number of lanes in one direction			2	
1c) Directional Factor			0.5	
1d) Lane distribution Factor			0.8	
Daily	Truck Volume		848	
Road Classification		Urba	n Principal Ar	terial
2) Breakdown of Truck Proportions				
,	Class 1		30.0%	
	Class 2		10.0%	
	Class 3		45.0%	
	Class 4		15.0%	
3) Daily Truck Volumes (4 Classes)			2019 to 2034	
	Class 1		254	
	Class 2		85	
	Class 3		382	
	Class 4		127	
4) Truck Factors (4 Classes)				
	Class 1		0.5	
	Class 2		2.3	
	Class 3		1.6	
	Class 4		5.5	
5) Daily ESALs per Truck Class (4 Classes)				
	Class 1		127	
	Class 2		195	
	Class 3		611	
a) Tatal Daily FOALs in Daaling Land	Class 4		700	
6) Total Daily ESALs in Design Lane			1633	
7) Total Base Year ESALs			2019	
Number of Days of Truck Traffic			300	
То	tal Base Year ESALs		489,900	
8) Cumulative ESALs for Design Period				
Design Period			15	
Annual Growth Rate (%)			0.83%	
Geometric Growth Factor			16.0	
			7,838,400	
Cumulative ESALs f	or the Design Period		7,838,400	

Note: ESAL Calculations are based on "Procedures for Estimating Traffic Loads for Pavement Design", Hajek, J., 1995, and "Adaptation and Verification of AASHTO Pavement Design Guide for Ontario Conditions" (MI-83), 2008.

Table F5Cawthra Road1.0 Km North of Burnhamthorpe RoadRegional Municipality Of PeelEquivalent Single Axle Load Calculations (Commercial Vehicle Data)

Description - Cawthra Road (1.0 Km North of Burnhamtho	orpe Road)		
Traffic Data Year	2017	2019	2034
Design Year		2019	
Analysis Period	2	15	
1a) Average Annual Daily Truck Traffic (AADTT)	2,028	2,062	2,334
Annual Growth Rate (%)	0.83%	0.83%	
1b) Truck fraction of total traffic		100.0%	
Number of lanes in one direction		2	
1c) Directional Factor		0.5	
1d) Lane distribution Factor		0.8	
Daily	/ Truck Volume	825	
2) Breakdown of Truck Portions (10 Classes)		2019 to 2034	
,	FHWA Vehicle Class 4	8.0%	
	FHWA Vehicle Class 5	30.5%	
	FHWA Vehicle Class 6	12.5%	
	FHWA Vehicle Class 7	23.0%	
	FHWA Vehicle Class 8	14.5%	
	FHWA Vehicle Class 9	4.7%	
	FHWA Vehicle Class 10	1.5%	
	FHWA Vehicle Class 11	0.1%	
	FHWA Vehicle Class 12	0.0%	
	FHWA Vehicle Class 13	5.0%	
3) Truck Factors (10 Classes)			
,,	FHWA Vehicle Class 4	2.0	
	FHWA Vehicle Class 5	0.3	
	FHWA Vehicle Class 6	0.9	
	FHWA Vehicle Class 7	4.0	
	FHWA Vehicle Class 8	1.1	
	FHWA Vehicle Class 9	1.6	
	FHWA Vehicle Class 10	4.0	
	FHWA Vehicle Class 11	1.0	
	FHWA Vehicle Class 12	4.3	
	FHWA Vehicle Class 13	5.6	
4) Total Daily ESALs in Design Lane		1539	
5) Total Base Year ESALs		2019	
Number of Days of Truck Traffic		300	
-	otal Base Year ESALs	461,700	
6) Cumulative ESALs for Design Period			
Design Period		15	
Annual Growth Rate (%)		0.83%	
Geometric Growth Factor		16.0	
	for the Design Period	7,387,200	

Table F5a Cawthra Road 1.0 Km North of Burnhamthorpe Road Regional Municipality Of Peel Equivalent Single Axle Load Calculations (AADT DATA)

Traffic Data Year 2017 2019 2034 Design Year 2013 2019 2019 Analysis Period 2 15 30.086 34.624 Annual Growth Rate (%) 0.83% 62% 5 Number of lanes in one direction 2 10 10 62% 10) Druck fraction of total traffic 0.83% 62% 10 10) Druck fraction of total traffic 0.83% 62% 10 10) Druck fraction of total traffic 0.83% 62% 10 10) Druck fraction 0.83 10 10 10 20 Breakdown of Truck Proportions Urban Principal Arteria 10 <th>Description - Cawthra Road (1.0 Km North of Bu</th> <th>urnhamthorpe Road)</th> <th></th> <th></th> <th></th>	Description - Cawthra Road (1.0 Km North of Bu	urnhamthorpe Road)			
Analysis Period 2 15 1a) Average Annual Growth Rate (%) 30,085 30,586 34,624 Annual Growth Rate (%) 0.83% 0.83% 1b) Truck fraction of total traffic 6.2% Number of lanes in one direction 2 1 1c) Directional Factor 0.5 1c) Directional Factor 0.8 1c) Directional Factor 0.8 1c) Directional Factor 0.8 1c) Directional Factor 0.8 1d) Lane distribution Factor 0.8 Daily Truck Volume 0.8 2) Breakdown of Truck Proportions Class 1 Class 2 10.0% Class 3 45.0% Class 4 50% 30 Daily Truck Volumes (4 Classes) Class 1 Class 2 76 Class 3 34.62 Class 4 55 5) Daily ESALs per Truck Class (4 Classes) Class 1 Class 3 16 Class 4 5.5 5) Daily ESALs in Design Lane 1462 7) Total Base Year ESALs 2019 Number of Days of Truck Traffic </td <td>Traffic Data Year</td> <td></td> <td>2017</td> <td>2019</td> <td>2034</td>	Traffic Data Year		2017	2019	2034
1a) Average Annual Daily Traffic (AADT) 30,085 30,586 34,624 Annual Growth Rate (%) 0.83% 0.83% 1b) Truck fraction of total traffic 6.2% Number of lanes in one direction 2 1c) Directional Factor 0.5 1d) Lane distribution Factor 0.8 1d) Lane distribution Factor 0.8 1d) Lane distribution Factor 0.8 2) Breakdown of Truck Proportions Class 1 30.0% Class 2 10.0% Class 2 10.0% Class 3 34.60% Class 4 15.0% 3) Daily Truck Volumes (4 Classes) Class 1 22.8 2.8 Class 1 22.8 2.8 2.8 Class 2 7.6 2.8 2.8 Class 3 3.42 2.8 2.8 1 Truck Factors (4 Classes) Class 1 0.5 2.8 2.8 2.8 1 Truck Factors (4 Classes) Class 1 0.5 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8	Design Year			2019	
Annual Growth Rate (%) 0.83% 0.83% 1b) Truck fraction of total traffic 6.2% 1c) Directional Factor 1c) Direction 1c) Directi	Analysis Period		2	15	
1b) Truck fraction of total traffic 6.2% Number of lanes in one direction 2 1c) Directional Factor 0.5 1d) Lane distribution Factor 0.8 Daily Truck Volume 759 Read Classification Urban Principal Arterial 2) Breakdown of Truck Proportions Class 1 Class 2 10.0% Class 3 45.0% Class 4 15.0% 3) Daily Truck Volumes (4 Classes) 2019 to 2034 Class 1 228 Class 2 76 Class 3 342 Class 4 15.0% 3) Daily Truck Volumes (4 Classes) Class 1 Class 1 228 Class 2 76 Class 1 0.5 Class 2 2.6 Class 2 2.6 Class 4 5.5 5) Daily ESALs per Truck Class (4 Classes) Class 1 Class 2 1.7 Class 3 3.646 Class 4 6.26 6) Daily ESALs in Design Lane 14.62 7) Total Base Year ESALs 3.00 <tr< td=""><td>1a) Average Annual Daily Traffic (AADT)</td><td></td><td>30,085</td><td>30,586</td><td>34,624</td></tr<>	1a) Average Annual Daily Traffic (AADT)		30,085	30,586	34,624
Number of lanes in one direction21c) Directional Factor0.51d) Lane distribution Factor0.8Daily Truck Volume759Road ClassificationUrban Principal Arterial2) Breakdown of Truck ProportionsClass 12) Breakdown of Truck ProportionsClass 22) Breakdown of Truck ProportionsClass 13) Daily Truck Volumes (4 Classes)Class 320) Daily Truck Volumes (4 Classes)Class 1228Class 2Class 3442Class 33442Class 41144) Truck Factors (4 Classes)Class 1Class 3342Class 41146) Truck Factors (4 Classes)Class 310 Daily ESALs per Truck Class (4 Classes)Class 1Class 1114Class 22.3Class 3546Class 46266) Total Daily ESALs in Design LaneClass 47) Total Base Year ESALs2019Number of Days of Truck Traffic300Did Base Year ESALs2019Number of Days of Truck Traffic303%Design Period15Annual Growth Rate (%)0.83%Generic Growth Factor16.07, Toto, Dir15	Annual Growth Rate (%)		0.83%	0.83%	
1c) Directional Factor 0.5 1d) Lane distribution Factor 0.8 Daily Truck Volume 759 Road Classification Urban Principal Arterial 2) Breakdown of Truck Proportions 30.% Class 1 30.0% Class 2 10.0% Class 3 45.0% 2) Daily Truck Volumes (4 Classes) Class 3 Class 1 228 Class 1 228 Class 2 76 Class 3 342 Class 3 342 Class 4 114 4) Truck Factors (4 Classes) Class 1 Class 2 2.3 Class 3 342 Class 3 342 Class 4 5.5 5) Daily ESALs per Truck Classes) Total Sas 2 Class 2 175 Class 3 546 Class 3 546 Class 4 5.5 5) Daily ESALs in Design Lane 1462 1 300 Number of Days of Truck Traffic	1b) Truck fraction of total traffic			6.2%	
1d) Lane distribution Factor0.8 Daily Truck Volume759Road ClassificationUrban Principal Arterial2) Breakdown of Truck ProportionsClass 1 30.0% Class 2 Class 2 (Class 4 30.0% Class 430.0% Class 2 15.0%3) Daily Truck Volumes (4 Classes)Class 1 228 Class 2 Class 3 Class 3 2019 to 20342019 to 20344) Truck Factors (4 Classes)Class 1 Class 2 Class 3 Class 4 Class 3 Class 4 Class 4 Class 3 Class 4 Class 4<	Number of lanes in one direction			2	
Daily Truck Volume759Road ClassificationUrban Principal Arterial2) Breakdown of Truck ProportionsClass 1 Class 2 (Class 2 (Class 3) (Class 3) (Class 3) (Class 4)30.0% (Class 2) (Class 3) (Class 3) (Class 3) (Class 4)3) Daily Truck Volumes (4 Classes)2019 to 2034 (Class 2) (Class 2) (Class 3) (Class 3) (Class 3) (Class 3) (Class 3) (Class 3) (Class 3) (Class 3) (Class 4)2019 to 2034 (Class 2) (Class 3) (Class 3) (Class 3) (Class 3) (Class 4)4) Truck Factors (4 Classes)Class 1 (Class 3) (Class 3) (Class 4)0.5 (Class 3) (Class 3) (Class 3) (Class 3) (Class 4)6) Daily ESALs per Truck Class (4 Classes)Class 1 (Class 3) (Class	1c) Directional Factor			0.5	
Road Classification Urban Principal Arterial 2) Breakdown of Truck Proportions Class 1 30.0% Class 2 30.0% Class 3 45.0% Class 3 45.0% Class 3 45.0% Class 4 15.0% Class 1 228 Class 1 228 Class 2 76 Class 2 76 Class 3 342 Class 4 114 14 4) Truck Factors (4 Classes) Class 1 0.5 Class 2 2.3 Class 2 2.3 Class 3 1.6 Class 2 2.3 Class 4 114 14 Class 2 2.3 Class 3 1.6 Class 3 1.6 Class 1 114 Class 2 1.75 Class 3 1.6 Class 3 2.6 6) Daily ESALs per Truck Class (4 Classes) Class 4 6.26 6) Total Daily ESALs in Design Lane 1462 7.5 1/ Total Base Year ESALs 219 3.00 Total Base Year ESALs 3.6 3.6 Outher of Days of Truck Traffic <	1d) Lane distribution Factor			0.8	
2) Breakdown of Truck Proportions Class 1 30.0% Class 2 10.0% Class 3 45.0% Class 4 15.0% 3) Daily Truck Volumes (4 Classes) 2019 to 2034 Class 1 228 Class 2 76 Class 3 342 Class 4 114 4) Truck Factors (4 Classes) Class 1 Class 3 342 Class 4 114 4) Truck Factors (4 Classes) Class 1 Class 3 342 Class 4 114 6) Truck Factors (4 Classes) Class 1 Class 1 0.5 Class 2 2.3 Class 3 36.5 5) Daily ESALs per Truck Class (4 Classes) Class 1 Class 1 114 Class 2 175 Class 3 266 6) Total Daily ESALs in Design Lane 1462 7) Total Base Year ESALs 2019 Number of Days of Truck Traffic 300 Design Period 15 Annual Growth Rate (%) 0.83% Generit	Daily Tru	ick Volume		759	
Class 1 30.0% Class 2 10.0% Class 3 45.0% Class 4 15.0% 3) Daily Truck Volumes (4 Classes) 2019 to 2034 Class 1 228 Class 3 342 Class 3 342 Class 3 342 Class 3 342 Class 4 114 4) Truck Factors (4 Classes) 0.5 Class 1 0.5 Class 2 2.3 Class 3 16 Class 4 5.5 5) Daily ESALs per Truck Class (4 Classes) 114 Class 1 114 Class 2 175 Class 3 546 Class 3 546 Class 4 626 6) Total Daily ESALs in Design Lane 1462 7) Total Base Year ESALs 2019 Number of Days of Truck Traffic 300 Total Base Year ESALs for Design Period 15 Annual Growth Rate (%) 0.83% Geometric Growth Factor 16.0 Total Base Year ESALs 0.83% <td>Road Classification</td> <td></td> <td>Urba</td> <td>n Principal Ar</td> <td>terial</td>	Road Classification		Urba	n Principal Ar	terial
Class 1 30.0% Class 2 10.0% Class 3 45.0% Class 4 15.0% 3) Daily Truck Volumes (4 Classes) 2019 to 2034 Class 1 228 Class 3 342 Class 3 342 Class 3 342 Class 3 342 Class 4 114 4) Truck Factors (4 Classes) 0.5 Class 1 0.5 Class 2 2.3 Class 3 16 Class 4 5.5 5) Daily ESALs per Truck Class (4 Classes) 114 Class 1 114 Class 2 175 Class 3 546 Class 3 546 Class 4 626 6) Total Daily ESALs in Design Lane 1462 7) Total Base Year ESALs 2019 Number of Days of Truck Traffic 300 Total Base Year ESALs for Design Period 15 Annual Growth Rate (%) 0.83% Geometric Growth Factor 16.0 Total Base Year ESALs 0.83% <td>2) Breakdown of Truck Proportions</td> <td></td> <td></td> <td></td> <td></td>	2) Breakdown of Truck Proportions				
Class 2 10.0% Class 3 45.0% Class 4 15.0% 3) Daily Truck Volumes (4 Classes) 2019 to 2034 Class 1 228 Class 2 76 Class 2 76 Class 3 342 Class 4 114 4) Truck Factors (4 Classes) 0.5 Class 1 0.5 Class 2 2.3 Class 1 0.5 Class 2 2.3 Class 2 2.3 Class 1 0.5 Class 2 2.3 Class 3 1.6 Class 4 5.5 5) Daily ESALs per Truck Class (4 Classes) 114 Class 2 1.75 Class 3 5.46 Class 4 626 6) Total Daily ESALs in Design Lane 1462 7) Total Base Year ESALs 2019 Number of Days of Truck Traffic 300 Total Base Year ESALs for Design Period 15 Annual Growth Rate (%) 0.83% Geometric Growth Factor 16.0 Total Base Y	,	Class 1		30.0%	
Class 3 45.0% Class 4 15.0% 3) Daily Truck Volumes (4 Classes) Class 1 228 Class 2 76 Class 3 342 Class 3 342 248 Class 3 342 248 A) Truck Factors (4 Classes) Class 1 0.5 A) Truck Factors (4 Classes) Class 1 0.5 Class 2 2.3 2.6 Class 4 5.5 5 5) Daily ESALs per Truck Class (4 Classes) 114 Class 1 1.6 Class 2 1.5 Class 3 5.6 5) Daily ESALs per Truck Class (4 Classes) 114 Class 2 1.5 Class 3 5.46 Class 4 6.26 6) Total Daily ESALs in Design Lane 1462 7) Total Base Year ESALs 2019 Number of Days of Truck Traffic 300 Total Base Year ESALs for Design Period 15 Annual Growth Rate (%) 0.83% Geometric Growth Factor 16.0 Total Base Year ESALs 16.0					
3) Daily Truck Volumes (4 Classes) Class 1 228 Class 2 76 Class 2 76 Class 3 342 Class 4 114 4) Truck Factors (4 Classes) Class 1 0.5 Class 2 2.3 Class 2 2.3 Class 2 2.3 Class 2 2.3 Class 2 2.3 Class 4 5.5 5) Daily ESALs per Truck Class (4 Classes) Class 4 5.5 5) Daily ESALs per Truck Class (4 Classes) U 114 Class 1 114 Class 2 2.3 Class 2 2.3 Class 4 5.5 5) Daily ESALs per Truck Class (4 Classes) U 114 Class 2 175 Class 3 5.6 Class 3 5.46 Class 4 626 6) Total Daily ESALs in Design Lane 1462 1462 Number of Days of Truck Traffic 300 300 Total Base Year ESALs 438,600 15 Number of Days of Truck Traffic 15 300 Design Period 15 15		Class 3			
Class 1 228 Class 2 76 Class 3 342 Class 4 14 4) Truck Factors (4 Classes) 0.5 Class 1 0.5 Class 2 2.3 Class 3 1.6 Class 4 5.5 5) Daily ESALs per Truck Class (4 Classes) 114 Class 1 1.14 Class 2 1.75 Class 3 546 Class 4 626 6) Total Daily ESALs in Design Lane 1462 7) Total Base Year ESALs 300 Number of Days of Truck Traffic 300 Total Base Year ESALs for Design Period 15 Annual Growth Rate (%) 0.83% Geometric Growth Factor 16.0 Total Factor 16.0		Class 4		15.0%	
Class 1 228 Class 2 76 Class 3 342 Class 4 14 4) Truck Factors (4 Classes) 0.5 Class 1 0.5 Class 2 2.3 Class 3 1.6 Class 4 5.5 5) Daily ESALs per Truck Class (4 Classes) 114 Class 1 1.14 Class 2 1.75 Class 3 546 Class 4 626 6) Total Daily ESALs in Design Lane 1462 7) Total Base Year ESALs 300 Number of Days of Truck Traffic 300 Total Base Year ESALs for Design Period 15 Annual Growth Rate (%) 0.83% Geometric Growth Factor 16.0 Total Factor 16.0	3) Daily Truck Volumes (4 Classes)			2019 to 2034	
Class 2 76 Class 3 342 Class 4 114 4) Truck Factors (4 Classes) 0.5 Class 1 0.5 Class 2 2.3 Class 3 1.6 Class 4 5.5 5) Daily ESALs per Truck Class (4 Classes) 114 Class 3 1.6 Class 4 5.5 5) Daily ESALs per Truck Class (4 Classes) 114 Class 1 114 Class 2 1.75 Class 3 546 Class 4 626 6) Total Daily ESALs in Design Lane 1462 7) Total Base Year ESALs 2019 Number of Days of Truck Traffic 300 Total Base Year ESALs for Design Period 15 Annual Growth Rate (%) 0.83% Geometric Growth Factor 16.0 Total Const Factor 16.0 Total Const Factor 16.0	o,,	Class 1			
Class 4 114 4) Truck Factors (4 Classes) Class 1 0.5 Class 2 2.3 Class 3 1.6 Class 3 1.6 Class 4 5.5 5) Daily ESALs per Truck Class (4 Classes) Class 1 114 Class 2 175 Class 2 175 Class 3 546 Class 3 546 Class 4 626 6) Total Daily ESALs in Design Lane 1462 7) Total Base Year ESALs 2019 Number of Days of Truck Traffic 300 Total Base Year ESALs 438,600 8) Cumulative ESALs for Design Period 15 Annual Growth Rate (%) 0.83% Geometric Growth Factor 16.0 7,017,600		Class 2			
Class 4 114 A) Truck Factors (4 Classes) 0.5 Class 1 0.5 Class 2 2.3 Class 3 1.6 Class 3 1.6 Class 4 0.5 Daily ESALs per Truck Class (4 Classes) 114 Class 3 1.6 Class 4 0.5 Class 2 175 Class 3 546 Class 4 626 6) Total Daily ESALs in Design Lane 1462 7) Total Base Year ESALs 2019 Number of Days of Truck Traffic 300 Total Base Year ESALs for Design Period 15 Annual Growth Rate (%) 0.83% Geometric Growth Factor 16.0 Total Conte Factor 16.0 Total Factor 16.0		Class 3		342	
Class 1 0.5 Class 2 2.3 Class 3 1.6 Class 4 5.5 5) Daily ESALs per Truck Class (4 Classes)		Class 4			
Class 1 0.5 Class 2 2.3 Class 3 1.6 Class 4 5.5 5) Daily ESALs per Truck Class (4 Classes) I Class 1 114 Class 2 175 Class 3 546 Class 4 626 6) Total Daily ESALs in Design Lane 1462 7) Total Base Year ESALs 2019 Number of Days of Truck Traffic 300 Total Base Year ESALs for Design Period 300 B) Cumulative ESALs for Design Period 15 Annual Growth Rate (%) 0.83% Geometric Growth Factor 16.0 7,017,600 16.0	4) Truck Factors (4 Classes)				
Class 3 1.6 Class 4 5.5 5) Daily ESALs per Truck Class (4 Classes) 114 Class 1 114 Class 2 175 Class 3 546 Class 4 626 6) Total Daily ESALs in Design Lane 1462 7) Total Base Year ESALs 2019 Number of Days of Truck Traffic 300 Total Base Year ESALs 438,600 8) Cumulative ESALs for Design Period 15 Annual Growth Rate (%) 0.83% Geometric Growth Factor 16.0 T,017,600 15		Class 1		0.5	
Class 4 5.5 5) Daily ESALs per Truck Class (4 Classes) Class 1 Class 1 114 Class 2 175 Class 3 546 Class 4 626 6) Total Daily ESALs in Design Lane 1462 7) Total Base Year ESALs 2019 Number of Days of Truck Traffic 300 Total Base Year ESALs 438,600 8) Cumulative ESALs for Design Period 15 Annual Growth Rate (%) 0.83% Geometric Growth Factor 16.0 7,017,600 15		Class 2		2.3	
5) Daily ESALs per Truck Class (4 Classes) Class 1 114 Class 2 175 Class 3 546 Class 3 626 6) Total Daily ESALs in Design Lane 1462 7) Total Base Year ESALs Class 4 0219 Number of Days of Truck Traffic 300 Total Base Year ESALs 438,600 8) Cumulative ESALs for Design Period 15 Annual Growth Rate (%) 0.83% Geometric Growth Factor 16.0 7,017,600		Class 3		1.6	
Class 1114Class 2175Class 3546Class 46266) Total Daily ESALs in Design Lane14627) Total Base Year ESALs2019Number of Days of Truck Traffic300Total Base Year ESALs438,6008) Cumulative ESALs for Design Period15Annual Growth Rate (%)0.83%Geometric Growth Factor16.07,017,60015		Class 4		5.5	
Class 2175Class 3546Class 46266) Total Daily ESALs in Design Lane14627) Total Base Year ESALs2019Number of Days of Truck Traffic300Total Base Year ESALs438,6008) Cumulative ESALs for Design Period15Annual Growth Rate (%)0.83%Geometric Growth Factor16.07,017,6007,017,600	5) Daily ESALs per Truck Class (4 Classes)				
Class 3546Class 46266) Total Daily ESALs in Design Lane14627) Total Base Year ESALs2019Number of Days of Truck Traffic300Total Base Year ESALs438,6008) Cumulative ESALs for Design Period15Annual Growth Rate (%)0.83%Geometric Growth Factor16.07,017,6007,017,600		Class 1		114	
Class 46266) Total Daily ESALs in Design Lane14627) Total Base Year ESALs Number of Days of Truck Traffic2019300300Total Base Year ESALs438,6008) Cumulative ESALs for Design Period Design Period15Annual Growth Rate (%) Geometric Growth Factor0.83%16.016.07,017,600		Class 2		175	
6) Total Daily ESALs in Design Lane14627) Total Base Year ESALs Number of Days of Truck Traffic2019 300 Total Base Year ESALs8) Cumulative ESALs for Design Period Design Period15 0.83% 16.0 7,017,600		Class 3		546	
7) Total Base Year ESALs2019Number of Days of Truck Traffic300Total Base Year ESALs438,6008) Cumulative ESALs for Design Period15Design Period15Annual Growth Rate (%)0.83%Geometric Growth Factor16.07,017,600		Class 4			
Number of Days of Truck Traffic300Total Base Year ESALs438,6008) Cumulative ESALs for Design Period15Design Period15Annual Growth Rate (%)0.83%Geometric Growth Factor16.07,017,600	6) Total Daily ESALs in Design Lane			1462	
Total Base Year ESALs438,6008) Cumulative ESALs for Design Period15Design Period15Annual Growth Rate (%)0.83%Geometric Growth Factor16.07,017,600	7) Total Base Year ESALs			2019	
8) Cumulative ESALs for Design PeriodDesign Period15Annual Growth Rate (%)0.83%Geometric Growth Factor16.07,017,600	Number of Days of Truck Traffic			300	
Design Period15Annual Growth Rate (%)0.83%Geometric Growth Factor16.07,017,6007,017,600	Total	Base Year ESALs		438,600	
Design Period15Annual Growth Rate (%)0.83%Geometric Growth Factor16.07,017,6007,017,600	8) Cumulative ESALs for Design Period				
Geometric Growth Factor 16.0 7,017,600	Design Period			15	
7,017,600	Annual Growth Rate (%)			0.83%	
	Geometric Growth Factor			16.0	
Cumulative ESALs for the Design Period 7,017,600				7,017,600	
	Cumulative ESALs for	the Design Period		7,017,600	

Note: ESAL Calculations are based on "Procedures for Estimating Traffic Loads for Pavement Design", Hajek, J., 1995, and "Adaptation and Verification of AASHTO Pavement Design Guide for Ontario Conditions" (MI-83), 2008.

Table F61993 AASHTO FLEXIBLE PAVEMENT DESIGN

File No.: 1-18-0615

Project Name: Cawthra Road - Sta. 9+960 to Sta. 12+750

Design Structural Number for Future Traffic

Design ESALs:	7,968,000
Initial Serviceability:	4.5
Terminal Serviceability:	2.5
Level of Reliability (%):	85
Overall Standard Deviation:	0.44
Subgrade Resilient Modulus (MPa):	35
Design Structural Number:	128

Effective Structural Number of Existing Pavement

Pavement Components	Thickness (mm)	Structural Coefficient	Drainage Coefficient	Structural Number
HMA			1.0	0
Base Course			0.9	0
Subbase Course			0.9	0
Total	0			0

The existing pavement is structurally inadequate.

New Pavement Structural Design

Pavement Components	Thickness (mm)	Structural Coefficient	Drainage Coefficient	Structural Number
HMA	150	0.42	1.0	63
Base Course	150	0.14	1.0	21
Subbase Course	450	0.12	1.0	54
Total	750			138

Table F71993 AASHTO FLEXIBLE PAVEMENT DESIGN

File No.: 1-18-0615

Project Name: Cawthra Road - Sta. 12+750 to Sta. 14+220

Design Structural Number for Future Traffic

Design ESALs:	10,401,600
Initial Serviceability:	4.5
Terminal Serviceability:	2.5
Level of Reliability (%):	85
Overall Standard Deviation:	0.44
Subgrade Resilient Modulus (MPa):	35
Design Structural Number:	132

Effective Structural Number of Existing Pavement

Pavement Components	Thickness (mm)	Structural Coefficient	Drainage Coefficient	Structural Number
HMA			1.0	0
Base Course			0.9	0
Subbase Course			0.9	0
Total	0			0

The existing pavement is structurally inadequate.

New Pavement Structural Design

Pavement Components	Thickness (mm)	Structural Coefficient	Drainage Coefficient	Structural Number
HMA	150	0.42	1.0	63
Base Course	150	0.14	1.0	21
Subbase Course	450	0.12	1.0	54
Total	750			138

Table F81993 AASHTO FLEXIBLE PAVEMENT DESIGN

File No.: 1-18-0615

Project Name: Cawthra Road - Sta. 14+220 to Sta. 15+460

Design Structural Number for Future Traffic

Design ESALs:	7,387,200
Initial Serviceability:	4.5
Terminal Serviceability:	2.5
Level of Reliability (%):	85
Overall Standard Deviation:	0.44
Subgrade Resilient Modulus (MPa):	30
Design Structural Number:	132

Effective Structural Number of Existing Pavement

Pavement Components	Thickness (mm)	Structural Coefficient	Drainage Coefficient	Structural Number
HMA			1.0	0
Base Course			0.9	0
Subbase Course			0.9	0
Total	0			0

The existing pavement is structurally inadequate.

New Pavement Structural Design

Pavement Components	Thickness (mm)	Structural Coefficient	Drainage Coefficient	Structural Number
HMA	150	0.42	1.0	63
Base Course	150	0.14	1.0	21
Subbase Course	450	0.12	1.0	54
Total	750			138

Table F91993 AASHTO FLEXIBLE PAVEMENT DESIGN

File No.: 1-18-0615

Project Name: Cawthra Road - Sta. 12+750 to Sta. 14+220

Design Structural Number for Future Traffic

Design ESALs:	10,401,600
Initial Serviceability:	4.5
Terminal Serviceability:	2.0
Level of Reliability (%):	85
Overall Standard Deviation:	0.44
Subgrade Resilient Modulus (MPa):	38
Design Structural Number:	121

Effective Structural Number of Existing Pavement

Pavement Components	Thickness (mm)	Structural Coefficient	Drainage Coefficient	Structural Number
HMA	175	0.28	1.0	49
Base Course	150	0.12	1.0	18
Subbase Course	255	0.09	1.0	23
Total	580			90

The existing pavement is structurally inadequate.

Full Depth Asphalt Replacement

Pavement Components	Thickness (mm)	Structural Coefficient	Drainage Coefficient	Structural Number
New HMA	175	0.42	1.0	74
Base Course	150	0.12	1.0	18
Subbase Course	255	0.09	1.0	23
Total	580			115

Table F101993 AASHTO FLEXIBLE PAVEMENT DESIGN

File No.: 1-18-0615

Project Name: Cawthra Road - Sta. 12+750 to Sta. 14+220

Design Structural Number for Future Traffic

Design ESALs:	10,401,600
Initial Serviceability:	4.5
Terminal Serviceability:	2.0
Level of Reliability (%):	85
Overall Standard Deviation:	0.44
Subgrade Resilient Modulus (MPa):	38
Design Structural Number:	121

Effective Structural Number of Existing Pavement

Pavement Components	Thickness (mm)	Structural Coefficient	Drainage Coefficient	Structural Number
HMA	175	0.28	1.0	49
Base Course	150	0.12	1.0	18
Subbase Course	255	0.09	1.0	23
Total	580			90

The existing pavement is structurally inadequate.

Mill and HMA Overlay Design

Mill (mm):	90		HMA Overlay (mm):	90
Pavement Components	Thickness (mm)	Structural Coefficient	Drainage Coefficient	Structural Number
New HMA	90	0.42	1.0	38
Remaining AC	85	0.28	1.0	24
Base Course	150	0.12	1.0	18
Subbase Course	255	0.09	1.0	23
Total	580			103

Table F111993 AASHTO FLEXIBLE PAVEMENT DESIGN

File No.: 1-18-0615

Project Name: Cawthra Road - Sta. 14+220 to Sta. 15+460

Design Structural Number for Future Traffic

Design ESALs:	7,387,200
Initial Serviceability:	4.5
Terminal Serviceability:	2.0
Level of Reliability (%):	85
Overall Standard Deviation:	0.44
Subgrade Resilient Modulus (MPa):	40
Design Structural Number:	114

Effective Structural Number of Existing Pavement

Pavement Components	Thickness (mm)	Structural Coefficient	Drainage Coefficient	Structural Number
HMA	140	0.28	1.0	39
Base Course	150	0.12	1.0	18
Subbase Course	310	0.09	1.0	28
Total	600			85

The existing pavement is structurally inadequate.

Full Depth Asphalt Replacement

Mill (mm):			HMA Overlay (mr	n):
Pavement Components	Thickness (mm)	Structural Coefficient	Drainage Coefficient	Structural Number
New HMA	140	0.42	1.0	59
Base Course	150	0.12	1.0	18
Subbase Course	310	0.09	1.0	28
Total	600			105

Table F121993 AASHTO FLEXIBLE PAVEMENT DESIGN

File No.: 1-18-0615

Project Name: Cawthra Road - Sta. 14+220 to Sta. 15+460

Design Structural Number for Future Traffic

Design ESALs:	7,387,200
Initial Serviceability:	4.5
Terminal Serviceability:	2.0
Level of Reliability (%):	85
Overall Standard Deviation:	0.44
Subgrade Resilient Modulus (MPa):	40
Design Structural Number:	114

Effective Structural Number of Existing Pavement

Pavement Components	Thickness (mm)	Structural Coefficient	Drainage Coefficient	Structural Number
HMA	140	0.28	1.0	39
Base Course	150	0.12	1.0	18
Subbase Course	310	0.09	1.0	28
Total	600			85

The existing pavement is structurally inadequate.

Mill and HMA Overlay Design

Mill (mm):	100		HMA Overlay (mm):	100
Pavement Components	Thickness (mm)	Structural Coefficient	Drainage Coefficient	Structural Number
New HMA	100	0.42	1.0	42
Remaining AC	40	0.28	1.0	11
Base Course	150	0.12	1.0	18
Subbase Course	310	0.09	1.0	28
Total	600			100