

DRAFT GEOTECHNICAL INVESTIGATION REPORT ENVIRONMENTAL ASSESSMENT AND PRELIMINARY DESIGN FOR DRAINAGE IMPROVEMENTS OF HIGHWAY 50 FROM MAYFIELD ROAD TO HEALEY ROAD THE REGION OF PEEL

Report

to

R.V. Anderson Associates Limited

Date: September 17, 2020 File: 28262

TABLE OF CONTENTS

1.		1
2.	SITE DESCRIPTION	1
3.	INVESTIGATION PROCEDURES	2
4.		3
5.	DESCRIPTION OF SUBSURFACE CONDITIONS	4
	5.1 Pavement Structure	4
	5.2 Sand to Gravelly Sand Fill	5
	5.3 Silty Clay Fill	5
	5.4 Silty Clay Till	
	5.5 Groundwater Conditions	7
6.	CORROSIVITY AND SULPHATE TEST RESULTS	8
6. 7.		
		. 10
	ENGINEERING DISCUSSION AND RECOMMENDATIONS	10 10
	ENGINEERING DISCUSSION AND RECOMMENDATIONS 7.1 Excavations and Dewatering	. 10 . 10 . 11
	ENGINEERING DISCUSSION AND RECOMMENDATIONS 7.1 Excavations and Dewatering 7.2 Pipe Bedding and Backfill	. 10 . 10 . 11 . 12
	 ENGINEERING DISCUSSION AND RECOMMENDATIONS. 7.1 Excavations and Dewatering. 7.2 Pipe Bedding and Backfill. 7.3 Corrosion and Sulphate Attack Potential. 	. 10 . 10 . 11 . 12 . 12
	 ENGINEERING DISCUSSION AND RECOMMENDATIONS 7.1 Excavations and Dewatering 7.2 Pipe Bedding and Backfill 7.3 Corrosion and Sulphate Attack Potential 7.4 Lateral Earth Pressures 	10 10 11 12 12 12
	 ENGINEERING DISCUSSION AND RECOMMENDATIONS. 7.1 Excavations and Dewatering. 7.2 Pipe Bedding and Backfill. 7.3 Corrosion and Sulphate Attack Potential. 7.4 Lateral Earth Pressures. 7.5 Pavement Reconstruction . 7.6 Culvert Replacements	. 10 . 10 . 11 . 12 . 12 . 12 . 15 . 15
	ENGINEERING DISCUSSION AND RECOMMENDATIONS 7.1 Excavations and Dewatering 7.2 Pipe Bedding and Backfill 7.3 Corrosion and Sulphate Attack Potential 7.4 Lateral Earth Pressures 7.5 Pavement Reconstruction 7.6 Culvert Replacements 7.6.1 Culvert Foundations 7.6.2 Placement of Culvert Backfill	10 11 12 12 12 14 15 15
	 ENGINEERING DISCUSSION AND RECOMMENDATIONS. 7.1 Excavations and Dewatering. 7.2 Pipe Bedding and Backfill. 7.3 Corrosion and Sulphate Attack Potential. 7.4 Lateral Earth Pressures. 7.5 Pavement Reconstruction . 7.6 Culvert Replacements	10 11 12 12 12 14 15 15

Statement of Limitations and Conditions

APPENDICES

Appendix A	Record of Borehole Sheets
------------	---------------------------

- Appendix B Geotechnical Laboratory Test Results
- Appendix C Borehole Location Plans
- Appendix D Laboratory Certificate of Analysis

1. INTRODUCTION

This report presents the results of a geotechnical investigation carried out by Thurber Engineering Ltd. (Thurber) in support of the Class Environmental Assessment (Class EA) and Preliminary Design for stormwater management/drainage improvements of Highway 50 in the Town of Caledon, Ontario. The limits of the project are from Mayfield Road to Healey Road for a total length of approximately 2.4 km (Site).

The purpose of the investigation was to explore the subsurface conditions at the Site, and based on the data obtained, to provide record of borehole sheets, a borehole location plan, a written description of the subsurface conditions, and geotechnical recommendations regarding design of excavations, groundwater control, base stability, backfill, pipe bedding, and embankment slope stability.

A hydrogeological investigation was completed concurrently with the geotechnical investigation. The results of the hydrogeological investigation will be reported under separate cover and should be read in conjunction with this report.

It is a condition of this report that Thurber's performance of its professional services is subject to the attached Statement of Limitations and Conditions.

2. SITE DESCRIPTION

This section of Highway 50 between Mayfield Road and Healey Road presently consists of a fivelane urban roadway with two lanes in the north bound direction, two lanes in the southbound direction, and a central turning lane. Concrete curbs and gutters abut the paved lanes on both sides of the road and shallow ditches lay beyond the curb on both sides.

A recent condition assessment of the roads drainage infrastructure has confirmed the need for a quick rehabilitation of 17 entrance culverts (and crossings) on the east and west side from McEwan Drive to Mayfield Road. The study area falls within the Humber River watershed which falls under the jurisdiction of Toronto and Region Conservation Authority (TRCA).

The north half of the study area from approximately Industrial Road to Healey Road, is located within the South Slope physiographic region, an area consisting primarily of till deposits forming the south slope of the Oak Ridges Moraine. The south half of the study area, from Industrial Road to Mayfield Road, is located within the Peel Plains physiographic region which also consist primarily of till deposits. Surficial geology maps indicate the surface soils to consist of clay to silt textured till derived from glaciolacustrine deposits. The bedrock underlying the corridor consists

of shale and limestone of the Georgian Bay formation, and is anticipated at depths of greater than 40 m.

The land use adjacent to the corridor is a mix of industrial and commercial properties, with a few residential properties located on the eastern side at the southern end of the site.

3. INVESTIGATION PROCEDURES

The field investigation was carried out between March 4 and May 26, 2020 and consisted of 25 boreholes drilled to depths of 3.7 to 4.4 m. The approximate locations of the boreholes are shown on the Borehole Location Plans in Appendix C.

The borehole locations were established in the field by Thurber relative to existing site features and using a handheld GPS receiver. The ground surface elevations at the borehole locations were interpreted using topographic survey data provided by R.V. Anderson Associates.

All borehole locations were cleared of utilities prior to commencement of drilling. The boreholes were repositioned as necessary in consideration of surface features, underground utilities, and restricted site access.

All boreholes were drilled using solid stem augers powered by a truck-mounted drill rig. Samples of the overburden soils were obtained from the boreholes at selected intervals using a split spoon sampler in conjunction with Standard Penetration Testing (SPT).

The field investigation was supervised on a full-time basis by a member of Thurber's technical staff who directed the drilling, sampling and in-situ testing operations, logged the boreholes and processed the recovered soil samples for transport to Thurber's laboratory for further examination and testing.

Groundwater conditions were observed in the open boreholes throughout the drilling operations. Monitoring wells were installed in selected boreholes to permit monitoring of the groundwater levels at the site. The monitoring wells consisted of 50 mm diameter PVC pipe with a slotted screen sealed at a selected depth within the borehole. The installation details are summarized in Table 3.1 below.

Borehole	Monitorir	Slotted Screen	
No.	Depth (m)	Elevation (m)	Length (m)
19-02	3.6	223.3	1.5
19-06	3.8	227.2	1.5
19-08	3.6	229.4	1.5
19-12	4.0	234.7	1.5
19-16	3.8	235.9	1.5
20-19	3.6	238.8	1.5
20-20	3.6	239.4	1.5
20-24	3.8	242.1	1.5

Table 3.1 – Monitoring Well Details

The boreholes in which no monitoring wells/piezometers were installed were backfilled in general accordance with Ontario Regulation 903.

The results of the field drilling, sampling and geotechnical laboratory testing are presented on the Record of Borehole sheets in Appendix A.

4. LABORATORY TESTING

The recovered soil samples were subjected to Visual Identification (VI) and to natural moisture content determination. Selected samples were also subjected to grain size distribution analyses (hydrometer and/or sieve) and Atterberg Limits testing, where appropriate. Laboratory testing results are summarized on the Record of Borehole sheets included in Appendix A and are presented on the figures included in Appendix B.

To evaluate the soils potential to cause corrosion to buried structures, selected soil samples recovered from the boreholes were submitted to SGS Laboratories for analysis of soil corrosivity properties. The sample locations and depths of the submitted samples are summarized below in Table 4.1.

Borehole	Sample No.	Depth (m)	Soil Type	Analysis
20-01	SS2	0.6 – 1.2	Silty Clay Till	Corrosivity
20-07	SS3	1.5 – 2.1	Silty Clay Till	Corrosivity
20-08	SS3	1.5 – 2.1	Silty Clay Till	Corrosivity
20-09	SS4	2.3 – 2.9	Silty Clay Till	Corrosivity

 Table 4.1- Samples Selected for Corrosivity Testing

Client: R.V. Anderson Associates File No.: 28262 Date: September 17, 2020 Page: 3 of 17

 File No.:
 28262
 Page:
 3 of 17

 E file:
 H:\20000-29999\28000-28999\28262 HWY 50 Drainage Improvements\Reports & Memos\Geotechnical\28262 - Draft
 FIDR 2020-09-17 Revisions.docx

Borehole	Sample No.	Depth (m)	Soil Type	Analysis
20-11	SS3	1.5 – 2.1	Silty Sand	Corrosivity
20-13	SS3	1.5 – 2.1	Silty Clay Till	Corrosivity
20-17	SS2	0.6 – 1.2	Silty Clay Till	Corrosivity
20-20	SS3	1.5 – 2.1	Silty Clay Fill	Corrosivity
20-22	SS3	1.5 – 2.1	Silty Clay Till	Corrosivity
20-25	SS3	1.5 – 2.1	Silty Clay Till	Corrosivity

The results of the analyses are provided on the Certificates of Analysis in Appendix D.

5. DESCRIPTION OF SUBSURFACE CONDITIONS

Details of the encountered soil stratigraphy are presented on the Record of Borehole sheets included in Appendix A. A general description of the stratigraphy, based on the conditions encountered in the boreholes, is given in the following paragraphs. However, the factual data presented on the Record of Borehole sheets takes precedence over this general description and must be used for interpretation of the site conditions. It should be recognized and expected that soil conditions will vary between and beyond borehole locations.

The subsurface stratigraphy encountered in the boreholes typically comprises a surficial pavement structure underlain by sand fill which is further underlain by native silty clay till.

More detailed descriptions of the individual strata encountered during the investigation are provided below.

5.1 Pavement Structure

The existing pavement structure encountered in the boreholes on Highway 50 consisted of 150 mm to 200 mm of asphalt over 0.4 to 1.9 m of sand and gravel to sand fill. The sand fill typically contained some gravel and trace to some silt.

SPT 'N' values obtained fully within the pavement granular material ranged from 7 to 85 blows per 0.3 m of penetration, indicating a loose to very dense condition. Moisture contents typically ranged from 3 to 10 percent with isolated values of up to 20 percent.

The results of a grain size distribution analysis carried out on a sample of the granular material are presented on the Record of Borehole sheet included in Appendix A and on Figure B1 of Appendix B. The results of the grain size distribution analysis are summarized below:

Soil Particle	Percentage (%)
Gravel	20 to 32
Sand	60 to 72
Silt & Clay	8

5.2 Sand to Gravelly Sand Fill

Sand fill containing some gravel to gravelly, trace silt to silty, was encountered in Boreholes 20-02, 20-04, 20-10, 20-11, 20-12, 20-13, and 20-16 beneath the pavement structure. Where fully penetrated the sand to gravelly sand fill ranged in thickness from 0.6 m to 3.3 m thick and extended to depths of between 1.5 and 3.7 m (Elevations 238.3 m and 225.0 m). Borehole 20-12 was terminated within the gravelly sand at a dept of approximately 4.4 m (Elevation 233.0 m).

SPT 'N' values within the sand fill typically ranged from 9 to 35 blows per 0.3 m of penetration, with a few values reaching as high as 100 blows per 0.15 m of penetration, indicating a loose to dense condition. Moisture contents typically ranged from 3 to 9 percent with isolated values of up to 22 percent.

The results of a grain size distribution analysis carried out on a sample of the sand to gravely sand fill are presented on the Record of Borehole sheet included in Appendix A and on Figure B2 of Appendix B. The results of the grain size distribution analysis are summarized below:

Soil Particle	Percentage (%)
Gravel	22 to 29
Sand	49 to 54
Silt & Clay	22 to 24

5.3 Silty Clay Fill

Silty clay fill containing trace sand to sandy and trace gravel was encountered in Boreholes 20-02 and 20-20 at depths of 0.9 and 1.4 m (Elevation 226.0 and 241.6 m), respectively. The silty clay fill was between 0.5 m to 0.9 m thick and extended to depths of 1.4 m and 2.3 m (Elevation 225.5 and 240.7 m) in Boreholes 20-02 and 20-20 respectively.

SPT 'N' values within the silty clay typically ranged from 6 to 10 blows per 0.3 m penetration indicating a stiff condition. Moisture contents typically ranged from 16 to 19 percent.

The results of a grain size distribution analyses carried out on a sample of the silty clay fill is presented on the Record of Borehole sheet included in Appendix A and on Figure B3 of Appendix B. The results of the grain size distribution analysis are summarized below:

Soil Particle	Percentage (%)
Gravel	6
Sand	23
Silt	44
Clay	27

5.4 Silty Clay Till

Silty clay till, containing some sand to sandy, and trace to some gravel, was encountered below the fill soils in all boreholes with the exception of Borehole 20-12. All boreholes, with the exception of Borehole 20-12, were terminated within the silty clay till at depths of between 3.7 to 4.4 m (Elevations 222.1 m to 242.3 m). While not encountered during the drilling, till soils in this area can often contain cobbles and boulders.

SPT 'N' values within the silty clay till ranged from 4 blows per 0.3 m penetration to 50 blows per 0.1 m penetration, with typical values between 15 to 50 blows indicating a very stiff to hard condition. Moisture contents typically ranged from 9 to 23 percent with isolated values of up to 33 percent.

The results of grain size distribution analyses carried out on selected samples of the silty clay till are presented on the Record of Borehole sheets included in Appendix A and on Figures B4 to B8 of Appendix B. The results of the grain size distribution analyses are summarized below:

Soil Particle	Percentage (%)
Gravel	0 to 16
Sand	10 to 39
Silt	37 to 49
Clay	19 to 42

The results of the Atterberg Limits testing are summarized below:

Index Property	Percentage (%)
Plastic Limit	14 to 21
Liquid Limit	25 to 46
Plasticity Index	10 to 25

The results of the Atterberg Limits testing indicate the till is of low to medium plasticity with group symbols of CL to CI.

5.5 Groundwater Conditions

Groundwater conditions were observed in the open boreholes throughout the drilling operations. Upon completion of augering, water levels were recorded in the open boreholes. Monitoring wells were installed in selected boreholes to permit monitoring of the groundwater levels. The groundwater levels measured in the open boreholes upon completion and subsequently in the monitoring wells are summarized in Table 5.1.

The groundwater levels are short-term readings and seasonal fluctuations of the groundwater level are to be expected. In particular, the groundwater levels may be at a higher elevation after periods of significant or prolonged precipitation or during spring snowmelt.

Barabala	Data	Dotoilo	Water	Level (m)
Borehole	Date	Details	Depth	Elevation
20-01	March 11, 2020	Open Borehole	Dry	-
20-02	May 26, 2020	Monitoring well	3.3	223.7
20-03	March 11, 2020	Open Borehole	Dry	-
20-04	April 6, 2020	Open Borehole	2.4	226.3
20-05	March 11, 2020	Open Borehole	Dry	-
20-06	May 26, 2020	Monitoring Well	3.0	228.0
20-07	March 11, 2020	Open Borehole	Dry	-
20-08	May 26, 2020	Monitoring Well	3.0	230.0
20-09	March 5, 2020	Open Borehole	Dry	-
20-10	March 5, 2020	Open Borehole	2.1	233.1
20-11	March 10, 2020	Open Borehole	Dry	-
20-12	May 26, 2020	Monitoring Well	2.8	234.6

Table 5.1 – Groundwater Levels and Observations

Date: September 17, 2020 Page: 7 of 17

H:\20000-29999\28000-28999\28262 HWY 50 Drainage Improvements\Reports & Memos\Geotechnical\28262 - Draft FIDR 2020-09-17 Revisions.docx

Client: R.V. Anderson Associates File No.: 28262

File No.: E file:

Borehole	Data	Detaile	Water	Level (m)
Borenoie	Date	Details	Depth	Elevation
20-13	March 10, 2020	Open Borehole	Dry	-
20-14	March 9, 2020	Open Borehole	Dry	-
20-15	April 7, 2020	Open Borehole	Dry	-
20-16	May 26, 2020	Monitoring Well	3.1	236.6
20-17	March 17, 2020	Open Borehole	Dry	-
20-18	March 9, 2020	Open Borehole	Dry	-
20-19	May 26, 2020	Monitoring Well	2.1	240.3
20-20	May 26, 2020	Monitoring Well	1.1	241.9
20-21	March 4, 2020	Open Borehole	Dry	-
20-22	March 4, 2020	Open Borehole	Dry	-
20-23	March 4, 2020	Open Borehole	Dry	-
20-24	May 26, 2020	Monitoring Well	2.2	243.7
20-25	March 4, 2020	Open Borehole	Dry	-

6. CORROSIVITY AND SULPHATE TEST RESULTS

During the investigation, samples of the native silty clay till and fill soils from across the site were submitted for analytical testing corrosivity parameters and sulphate. The results of the analytical tests are shown in Table 6.1. The laboratory certificates of analysis are presented in Appendix D.

	Test Results													
Borehole	Sulphide (%)	Chloride (µg/g)	Sulphate (µg/g)	рН	Electrical Conductivity (μS/cm)	Resistivity (Ohms.cm)	Redox Potential (mV)							
20-01 SS2	<0.04	1600	110	8.10	2110	474	225							
20-07 SS3	<0.04	1800	77	8.17	1300	769	244							
20-08 SS3	<0.04	680	24	8.08	1350	740	276							

Client: R.V. Anderson Associates

File No.: 28262 Date: September 17, 2020 8 of 17

Page: E file: H:\20000-29999\28000-28999\28262 HWY 50 Drainage Improvements\Reports & Memos\Geotechnical\28262 - Draft FIDR 2020-09-17 Revisions.docx

				Test Re	esults		
Borehole	Sulphide Chlori (%) (µg/g		Sulphate (µg/g)	рН	Electrical Conductivity (µS/cm)	Resistivity (Ohms.cm)	Redox Potential (mV)
20-09 SS4	<0.04	650	73	8.32	1350	743	275
20-11 SS3	<0.04	1300	79	8.21	1600	625	220
20-13 SS3	0.10	530	380	8.45	1680	596	231
20-17 SS2	<0.04	880	230	8.46	2580	388	186
20-20 SS3	<0.04	500	71	8.91	2280	439	237
20-22 SS3	<0.04	1100	68	8.42	1900	526	226
20-25 SS3	<0.04	1200	200	8.20	2570	389	284

7. ENGINEERING DISCUSSION AND RECOMMENDATIONS

This section of the report provides interpretation of the geotechnical data and presents comments and recommendations for design and construction of the low impact drainage improvements including pipe bedding and backfill, excavations and dewatering, culverts replacements, embankments and lateral earth pressures.

The recommendations are based on the subsurface soil and groundwater conditions encountered during the investigation. The soil conditions may vary between and beyond the borehole locations, and accordingly geotechnical inspection during construction is important to assess any variation of subsurface conditions and to provide additional recommendations if necessitated by such variations.

The interpretation and recommendations are intended for the use of the design consultant and shall not be relied upon by any other parties including the construction contractor or used for any purposes other than development of the project design. Comments on construction methodology and equipment, where presented, are provided only to highlight those aspects that could affect the design of the project. Contractors must make their own assessment of the factual information presented in previous sections of the report, and the implications on equipment selection, construction methodology, and scheduling.

7.1 Excavations and Dewatering

Installed monitoring wells across the site indicate the groundwater table typically ranged from 2.1 m to 3.3 m below existing ground surface elevation, with a localized water table as high as 1.1 m below ground surface at one location. Considering the consistency and relatively low permeability of the silty clay till soil, dewatering of shallow excavations using sumps and pumps is considered to be feasible. It is anticipated that most excavations for LID applications will not extend below the groundwater level, however provisions should be made for control of any surface water run-off and subsurface seepage from any wet water-bearing sandy fill soils above the till or sand seams within the till.

For excavations extending below the groundwater elevation, the hydrogeological reported completed by Thurber in tandem with the geotechnical investigation should be referred to for control on groundwater.

All excavations should conform with the requirements of the latest edition of the Ontario Occupations Health & safety Act (OHSA), its regulation and other applicable local regulations. For the purposes of OHSA, the native very stiff to hard silty clay encountered across the site can

be classified as Type 2 soil where above the groundwater level and can be classified as Type 4 soil when below the groundwater level. The overlying sand to gravelly sand fill can be classified as Type 3 soil.

The excavation and backfilling for culverts should be carried out in accordance with OPSS 902.

Slopes of temporarily unsupported cuts should conform with the requirements of OHSA. Flatter slopes may be required at locations where water seepage or sloughing occurs during excavation. Where space restrictions preclude excavation of inclined slopes, a trench box or braced excavation should be employed for worker protection.

Temporary shoring, if required, should be designed by a licensed Professional Engineer experienced in design of shoring systems. The design of all members in the shoring system should include the effects of surcharge loads such as those imposed by adjacent utilities and construction equipment. Soil should not be stockpiled adjacent to the excavation.

Use of a hydraulic excavator should be suitable for excavation in the overburden soils. The selection of the method of excavation is the responsibility of the contractor and must be based on their equipment, experience and interpretation of the site conditions. Provision must be made for the handling of pavement materials, potential obstructions in the fill, and possible cobbles, boulders and rock slabs in the till.

7.2 Pipe Bedding and Backfill

It is understood that storm sewers may be required as part of the LID applications. Prior to placement of the pipe bedding, the base of the sewer trenches should be maintained in a dry condition, free of loose, disturbed material. The pipe must be placed on a uniformly competent subgrade. Pipe bedding materials, compaction and cover should follow OPSD 802.030 to 803.034, and/or Region of Peel specifications.

In areas where a less competent subgrade is encountered, it may be necessary to increase the bedding thickness. Any excessively soft, loose or compressible materials at the pipe subgrade should be subexcavated and replaced with OPS Granular A material compacted to at least 95% of Standard Proctor maximum dry density (SPMDD).

Trench backfill materials should be placed in loose lift thicknesses not exceeding 200 mm. Where trenches are located beneath the roadway, OPSS Granular A or B material compacted to 100% SPMDD, 19 mm or 50 mm crusher run limestone, or unshrinkable fill should be used as backfill. For trenches located outside of the roadway, the portion of the trench above the pipe cover can

be backfilled with unfrozen excavated native soil provided it is free of organics, debris and other deleterious materials. Approved soil backfill should be compacted to at least 98% of its SPMMD at a placement moisture content within about 2% of the optimum moisture content for efficient compaction. The till must be adequately broken down and compacted in the trench.

7.3 Corrosion and Sulphate Attack Potential

The results of the corrosivity and sulphate analytical conducted on the native soil and sand fill indicate the following conditions at the locations tested:

- High chloride content of the silty clay till and fill soils, indicates the surrounding soil may be corrosive to concrete elements. The risk of sulphate attack on concrete from the native or fill soil is negligible. The effect of road deicing salt should also be considered when selecting the class of concrete.
- Due to the generally low resistivity of the soil encountered across the site, the potential for corrosion on steel, cast iron and other metals is considered to be very severe.
- Appropriate protection measures are recommended for concrete and metal structural elements. The effect of road deicing salt should be considered while selecting the corrosion protection measures.

7.4 Lateral Earth Pressures

Lateral earth pressures acting on any buried structures may be assumed to impose a triangularly distributed load. For a fully drained backfill, the pressures should be computed in accordance with the CHBDC, but are generally given by the expression:

	р	=	К (үН + q)
where	р	=	lateral earth pressure acting at depth H, kPa
	К	=	earth pressure coefficient
	γ	=	unit weight of retained soil or backfill, kN/m ³
	н	=	depth below top of wall where pressure is computed, m
	q	=	surcharge pressure including traffic loads, kPa

Table 6.3 lists the unfactored parameters recommended for design, assuming an essentially level ground surface behind and in front of the walls:

	Retained Material							
Parameter	OPSS Granular A or Granular B Type II	OPSS Granular B Type I						
Unit Weight, kN/m ³	22	21						
Friction Angle, degrees	35	32						
Active Pressure Coefficient, Ka	0.27	0.31						
At-Rest Pressure Coefficient, K ₀	0.43	0.47						
Passive Pressure Coefficient, K_p	3.7	3.3						

Table 6.3 – Earth Pressure Parameters

The use of a material with a high friction angle and low active pressure coefficient (e.g. Granular A, Granular B Type II) is preferred as it results in lower earth pressures acting on the structure.

The backfill should be placed and compacted in loose thin lifts to a minimum of 95 percent of the Standard Proctor Maximum Dry Density within 2 percent of its optimum moisture content (98 percent when within 300 mm of design subgrade surface in areas of proposed pavement surface). No dumping of backfill material should be permitted in such a way that the successive layers slope downward toward the wall. The layers should be horizontal or slope downward away from the wall.

If lateral movement is not permissible and/or the structure is restrained from lateral yielding, the at-rest earth pressure coefficient, K_o , should be used. If the wall design allows lateral yielding (non-rigid structure), the active earth pressure coefficient, K_a , may be used.

If the design includes a sloping ground surface behind or in front of the structure, the earth pressure parameters will require modification. Thurber should be contacted to provide appropriate earth pressure coefficients for a sloping ground situation.

The earth pressure coefficients in the table above do not include potential compaction effects that must be included in the design.

Design of the structures must incorporate measures to permit drainage of the backfill and avoid potential build-up of hydrostatic pressures behind the walls.

7.5 Pavement Reconstruction

The existing pavement structure encountered at the ground surface on highway 50 typically consisted of 150 mm to 200 mm of asphalt over 400 mm to 1900 mm of sand and gravel to sand fill.

It is understood that reconstruction of the pavement structure may be required in areas of trenching or excavations to construct LID applications and full width pavement reconstruction and/or rehabilitation is not within the terms of reference for this project. In this regard, it is recommended that the pavement structure for reconstruction should match the existing pavement structure thicknesses.

It is assumed that any permanent structure, pipe/sewer, or culvert placement will be backfilled with compacted granular fill, approved earth fill and/or unshrinkable fill (lean concrete) to the new top of subgrade. The subgrade level should allow for the thickness of the existing pavement to maintain lateral drainage at the top of subgrade. Where native backfill materials are used, the exposed subgrade should be compacted and proof-rolled with a heavy roller and examined to identify areas of unstable subgrade. Any soft/wet areas identified shall be subexcavated and replaced with approved material within 2% of Optimum Moisture Content (OMC), and compacted to at least 98% of Standard Proctor Maximum Dry Density (SPMDD).

All new granular subbase material should consist of OPSS Granular B Type II, while the granular base material should consist of OPSS Granular A. All new granular material should meet the requirements of OPSS 1010, and be compacted to 100 percent of the SPMDD within 2 percent of OMC. All granular material should be compacted in accordance with the requirements of OPSS.MUNI 501.

Portions of the existing pavement granular material may be suitable for re-use as a subbase in the new pavement structure, subject to further evaluation and testing during construction. If these materials are proposed for reuse, care must be taken to avoid mixing with underlying native soils during excavation. All materials should be stockpiled separately and protected from environmental disturbances.

For the pavement to function properly, provision must be made for water to drain out of, and not collect in, the granular courses on the pavement subgrade. In this regard, the top of the compacted subgrade should be graded smooth with a minimum crossfall of 3% towards subdrains, catch basins and/or manholes. Catch basins and manholes should be provided with

stub drains just above the drain level to permit drainage of the backfill. Continuity of drainage should be maintained at transitions from existing pavement to new pavement.

7.6 Culvert Replacements

It is understood that culvert replacement of up to 17 CSP entrance culverts along both sides of Highway 50 may be required as part of this project. The existing culverts range in size from 400 mm to 3000 mm.

Recommendations regarding bedding, backfill and foundation design for the culverts are presented below.

7.6.1 Culvert Foundations

Based on the borehole information, the anticipated subgrade for any of the proposed culvert replacements is expected to consist of very stiff to hard silty till or compact to dense gravelly sand to sand fill was encountered across the site. In general, the native till and compact gravelly sand to sand is considered suitable for support of the proposed culverts. To provide uniform support along the lengths of the culverts, in areas where both native till and sand fill is encountered, it is recommended that any loose sand fill be subexcavated and the bedding be placed on the till throughout.

Bedding and backfill to the culverts should be in accordance with OPSD 802.010 or 802.014 as applicable. A minimum 300 mm thickness of compacted Granular A bedding material is recommended below the culvert. The bedding thickness may need to be increased where sub excavation is required to remove deleterious materials below the design excavation level or a less competent subgrade is encountered.

The bedding material should be placed as soon as practical following inspection and approval of the final subgrade as protection from disturbance during construction.

7.6.2 Placement of Culvert Backfill

Culvert backfill should be placed in maximum 200 mm loose lifts and compacted to 98% of the material's Standard Proctor Maximum Dry Density (SPMDD). In order to achieve the desired density, the backfill material should have a moisture content within 2% of the Optimum Moisture Content (OMC).

The backfill should be placed and compacted in simultaneous equal lifts on both sides of the culvert, and the difference of the top of backfill elevation on either side of the culvert should not

be greater than 500 mm at any time. Heavy compaction equipment should not be used adjacent to the walls and roof of the culvert. Compaction equipment to be used adjacent to culverts and retaining walls should be restricted in accordance with OPSS.MUNI 501.

7.7 Construction Inspection and Testing

The successful performance of the pavement, roadwork, and culvert installation will depend largely on good workmanship and quality control during construction. It is therefore recommended that materials testing and inspection by qualified personnel be provided during construction. The inspection and testing should include observation and inspection of foundation and embankment subgrade conditions, compaction testing of road subgrade fill and retaining wall/culvert backfill, asphalt paving and sampling, and concrete testing.

8. CLOSURE

We trust that this report provides the information you require at this time. If you have any questions regarding this report, please contact the undersigned at your earliest convenience.

Yours truly,

Thurber Engineering Ltd.

Cory Zanatta, P.Eng. Geotechnical Engineer

Renato Pasqualoni, P.Eng. Review Principal

STATEMENT OF LIMITATIONS AND CONDITIONS

1. STANDARD OF CARE

This Report has been prepared in accordance with generally accepted engineering or environmental consulting practices in the applicable jurisdiction. No other warranty, expressed or implied, is intended or made.

2. COMPLETE REPORT

All documents, records, data and files, whether electronic or otherwise, generated as part of this assignment are a part of the Report, which is of a summary nature and is not intended to stand alone without reference to the instructions given to Thurber by the Client, communications between Thurber and the Client, and any other reports, proposals or documents prepared by Thurber for the Client relative to the specific site described herein, all of which together constitute the Report.

IN ORDER TO PROPERLY UNDERSTAND THE SUGGESTIONS, RECOMMENDATIONS AND OPINIONS EXPRESSED HEREIN, REFERENCE MUST BE MADE TO THE WHOLE OF THE REPORT. THURBER IS NOT RESPONSIBLE FOR USE BY ANY PARTY OF PORTIONS OF THE REPORT WITHOUT REFERENCE TO THE WHOLE REPORT.

3. BASIS OF REPORT

The Report has been prepared for the specific site, development, design objectives and purposes that were described to Thurber by the Client. The applicability and reliability of any of the findings, recommendations, suggestions, or opinions expressed in the Report, subject to the limitations provided herein, are only valid to the extent that the Report expressly addresses proposed development, design objectives and purposes, and then only to the extent that there has been no material alteration to or variation from any of the said descriptions provided to Thurber, unless Thurber is specifically requested by the Client to review and revise the Report in light of such alteration or variation.

4. USE OF THE REPORT

The information and opinions expressed in the Report, or any document forming part of the Report, are for the sole benefit of the Client. NO OTHER PARTY MAY USE OR RELY UPON THE REPORT OR ANY PORTION THEREOF WITHOUT THURBER'S WRITTEN CONSENT AND SUCH USE SHALL BE ON SUCH TERMS AND CONDITIONS AS THURBER MAY EXPRESSLY APPROVE. Ownership in and copyright for the contents of the Report belong to Thurber. Any use which a third party makes of the Report, is the sole responsibility of such third party. Thurber accepts no responsibility whatsoever for damages suffered by any third party resulting from use of the Report without Thurber's express written permission.

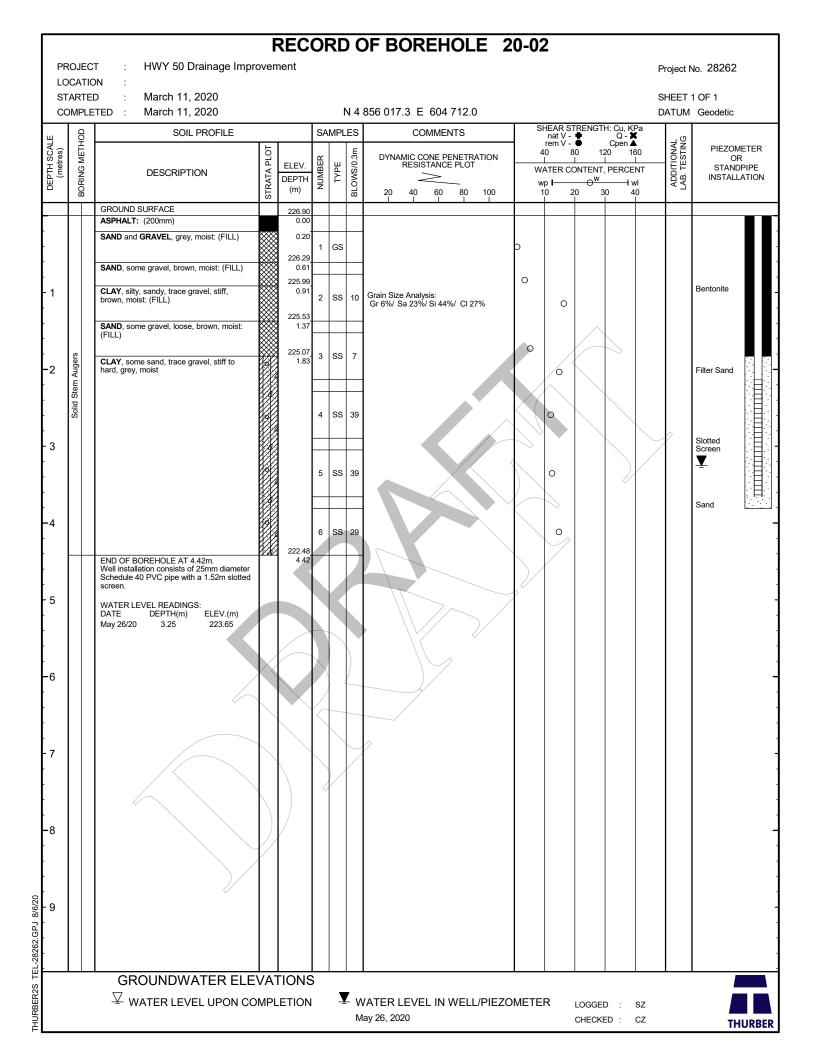
5. INTERPRETATION OF THE REPORT

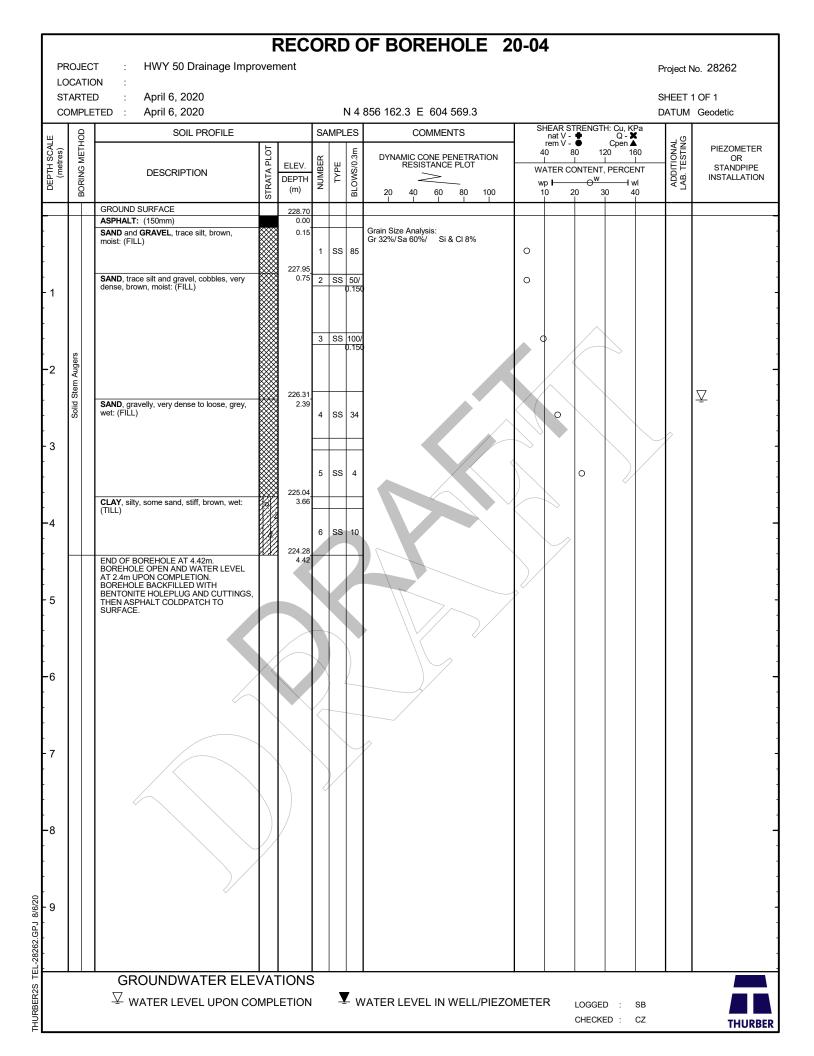
- a) Nature and Exactness of Soil and Contaminant Description: Classification and identification of soils, rocks, geological units, contaminant materials and quantities have been based on investigations performed in accordance with the standards set out in Paragraph 1. Classification and identification of these factors are judgmental in nature. Comprehensive sampling and testing programs implemented with the appropriate equipment by experienced personnel may fail to locate some conditions. All investigations utilizing the standards of Paragraph 1 will involve an inherent risk that some conditions will not be detected and all documents or records summarizing such investigations will be based on assumptions of what exists between the actual points sampled. Actual conditions may vary significantly between the points investigated and the Client and all other persons making use of such documents or records with our express written consent should be aware of this risk and the Report is delivered subject to the express condition that such risk is accepted by the Client and such other persons. Some conditions are subject to change over time and those making use of the Report should be aware of this possibility and understand that the Report only presents the conditions at the sampled points at the time of sampling. If special concerns exist, or the Client has special considerations or requirements, the Client should disclose them so that additional or special investigations may be undertaken which would not otherwise be within the scope of investigations made for the purposes of the Report.
- b) Reliance on Provided Information: The evaluation and conclusions contained in the Report have been prepared on the basis of conditions in evidence at the time of site inspections and on the basis of information provided to Thurber. Thurber has relied in good faith upon representations, information and instructions provided by the Client and others concerning the site. Accordingly, Thurber does not accept responsibility for any deficiency, misstatement or inaccuracy contained in the Report as a result of misstatements, omissions, misrepresentations, or fraudulent acts of the Client or other persons providing information relied on by Thurber. Thurber is entitled to rely on such representations, information and instructions and is not required to carry out investigations to determine the truth or accuracy of such representations, information and instructions.
- c) Design Services: The Report may form part of design and construction documents for information purposes even though it may have been issued prior to final design being completed. Thurber should be retained to review final design, project plans and related documents prior to construction to confirm that they are consistent with the intent of the Report. Any differences that may exist between the Report's recommendations and the final design detailed in the contract documents should be reported to Thurber immediately so that Thurber can address potential conflicts.
- d) Construction Services: During construction Thurber should be retained to provide field reviews. Field reviews consist of performing sufficient and timely observations of encountered conditions in order to confirm and document that the site conditions do not materially differ from those interpreted conditions considered in the preparation of the report. Adequate field reviews are necessary for Thurber to provide letters of assurance, in accordance with the requirements of many regulatory authorities.

6. RELEASE OF POLLUTANTS OR HAZARDOUS SUBSTANCES

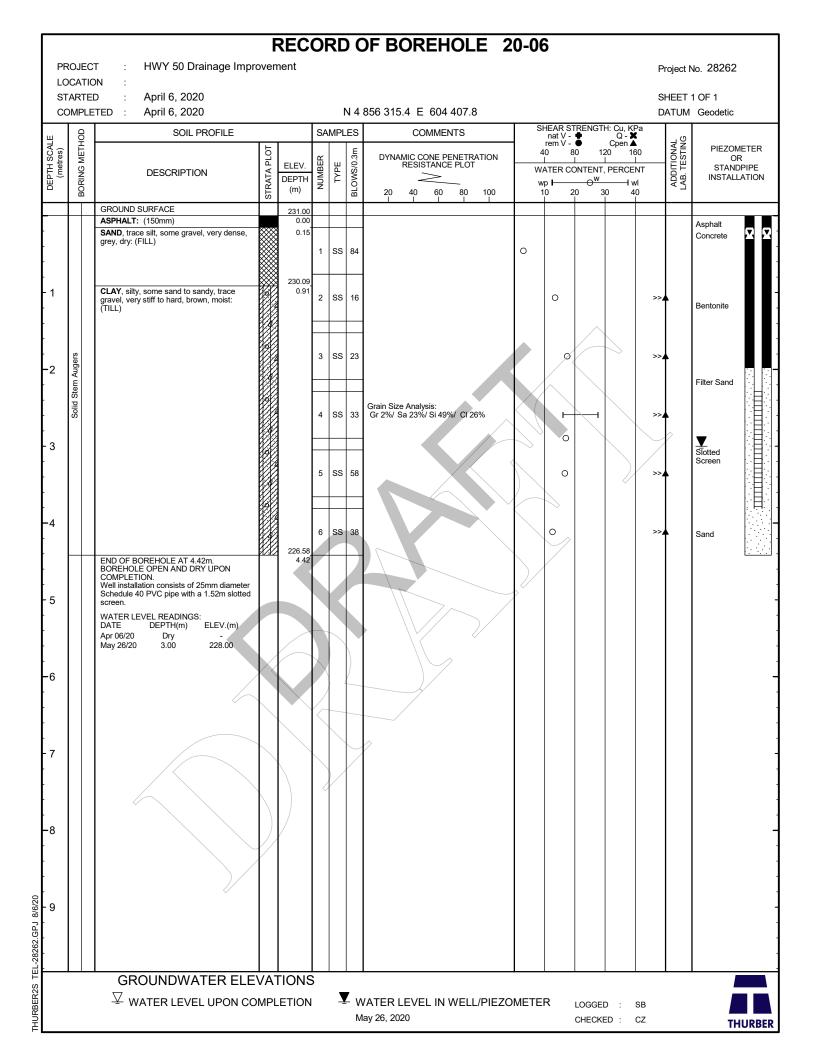
Geotechnical engineering and environmental consulting projects often have the potential to encounter pollutants or hazardous substances and the potential to cause the escape, release or dispersal of those substances. Thurber shall have no liability to the Client under any circumstances, for the escape, release or dispersal of pollutants or hazardous substances, unless such pollutants or hazardous substances have been specifically and accurately identified to Thurber by the Client prior to the commencement of Thurber's professional services.

7. INDEPENDENT JUDGEMENTS OF CLIENT


The information, interpretations and conclusions in the Report are based on Thurber's interpretation of conditions revealed through limited investigation conducted within a defined scope of services. Thurber does not accept responsibility for independent conclusions, interpretations, interpretations and/or decisions of the Client, or others who may come into possession of the Report, or any part thereof, which may be based on information contained in the Report. This restriction of liability includes but is not limited to decisions made to develop, purchase or sell land.


Appendix A

Record of Borehole Sheets


PR	OJEC	T : HWY 50 Drainage Impr		O	RD) (OF BOREHOLE 2	0-01	Project	No. 28262
LO ST.	CATIO	DN : D : March 11, 2020							SHEET	1 OF 1
CC		TED : March 11, 2020					855 949.5 E 604 798.4		DATUM	Geodetic
DEPTH SCALE (metres)	BORING METHOD	SOIL PROFILE	(m) STRATA PLOT (m) (m)	NUMBER	TYPE BY	BLOWS/0.3m	COMMENTS DYNAMIC CONE PENETRATION RESISTANCE PLOT	SHEAR STRENGTH: Cu, KPa nat V • Q • Z rem V • Q • Z 40 80 120 160 40 80 120 160 WATER CONTENT, PERCENT wp	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
_		GROUND SURFACE ASPHALT: (200mm)	226.50 0.00							
-		SAND and GRAVEL, brown, moist: (FILL)	0.20	1	GS			0		
- 1 - 1		CLAY, silty, some to trace sand, trace gravel, firm to hard, brown to grey, moist: (TILL)	0.76	2	SS	6		φ		
-2	Solid Stem Augers			3	SS	10	Grain Size Analysis: Gr 0%/ Sa 18%/ Si 47%/ Cl 35%	0		
- - - 3	Solid St			4	SS	21		0	2	
				5	ss	55		•		
-4			222.08	6	SS	47		0		
- - 5		END OF BOREHOLE AT 4.42m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO SURFACE.	4.42							
- - -6										
- 7							7			
-				<						
-8 - -										
- 9 - - -										
		GROUNDWATER ELE			<u> </u>	Z w	ATER LEVEL IN WELL/PIEZO	METER LOGGED : SZ CHECKED : CZ		

				RE	CO	R	0 0	OF BOREHOLE 2	20-03		
STATED March 11, 2020 SHIET 10 - 11 COMPLETED March 11, 2020 N 4 565 103.1 E - 604 652.0 SHIET 10 - 11 UNITED SOLL PROPILE SAMPLES COMMENTS SHIET 10 - 11 UNITED SOLL PROPILE SAMPLES COMMENTS SHIET 10 - 11 UNITED SOLL PROPILE SAMPLES COMMENTS SHIET 10 - 11 UNITED SOLL PROPILE SAMPLES COMMENTS SHIET 10 - 11 UNITED DESCRIPTION SSL (DECTH) SHIET 10 - 11 SHIET 10 - 11 UNITED DESCRIPTION SSL (DECTH) SHIET 10 - 11 SHIET 10 - 11 UNITED DESCRIPTION SSL (DECTH) SHIET 10 - 11 SHIET 10 - 11 UNITED DESCRIPTION SSL (DECTH) SHIET 10 - 11 SHIET 10 - 11 UNITED DESCRIPTION SSL (DECTH) SHIET 10 - 11 SHIET 10 - 11 UNITED DESCRIPTION SSL (DECTH) SHIET 10 - 11 SHIET 10 - 11 UNITED SSL (DECTH) SHIET 10 - 11 SHIET 10 - 11 SHIET 10 - 11				ovement						Project N	No. 28262
Signed Bar DESCRIPTION State (B) (B) (B) (B) (B) (B) (B) (B) (B) (B)	S	FARTE	ED : March 11, 2020				N 4	856 103.1 E 604 652.0			
Openation Openation <t< td=""><td>ш</td><td>8</td><td>SOIL PROFILE</td><td></td><td>s</td><td>SAMP</td><td>LES</td><td>COMMENTS</td><td>SHEAR STRENGTH: Cu, KPa nat V - PQ - X</td><td>. ()</td><td></td></t<>	ш	8	SOIL PROFILE		s	SAMP	LES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - PQ - X	. ()	
-1 ASPMAT: c200m) 0.0 <	DEPTH SCAL (metres)	BORING METH		STRATA PLOT (m) (m)		TYPE	BLOWS/0.3m	\geq	40 80 120 160	ADDITIONAL LAB. TESTINO	PIEZOMETER OR STANDPIPE INSTALLATION
1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 2 1 2 1 1 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>-</td> <td></td> <td></td> <td></td> <td></td>	-					_	-				
-2 1 -2 -2 -3 -4 -3 </td <td>-</td> <td></td> <td>SAND, some gravel, dense, brown, moist: (FILL)</td> <td></td> <td></td> <td>GS</td> <td>3</td> <td></td> <td>0</td> <td></td> <td></td>	-		SAND, some gravel, dense, brown, moist: (FILL)			GS	3		0		
-2 used, bown to grey, most. (TLL) 3 85 12 -3 -4 -4 -5 -5 -5 -5 -5 -5 -6 -7 -6 -7	- - 1 -				2	2 SS	36		0		
-3 -3 -5 55 54 Grain Size Analysis 0 -4 -5 55 54 Grain Size Analysis 0 -4 -5 55 54 Grain Size Analysis 0 -5 BOOLEAUE OPENAD DRY UPON CORRECT OPENAD DRY UPON CORRECT OLIPATION TO SUFFACE 0 0 -6 -6 -7 -8 0 -7	- -2	n Augers	CLAY, silty, some sand, trace gravel, stiff to hard, brown to grey, moist: (TILL)		.52	3 SS	5 12		0		
-4 5 SS 44 Grain Size Analysis: Grain Size An	- 3	Solid Sten			4	l SS	5 15				
6 SS 44 END OF BOREHOLE AT 4.42m BOREHOLE OF BAND DRY UPON COMMELTING BERTROUTE MULE DWITH BERTROUTE AND CUTTINGS. THEN ASPHALT COLDPATCH TO SURFACE.					Ę	5 SS	6 44	Grain Size Analysis: Gr 1%/ Sa 14%/ Si 44%/ Cl 41%	0		
-6 -8	-4				.78	i se	6 44		•		
	- 5 -		COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO		.92						
	- - -6										
	- - - 7							2			
9 GROUNDWATER ELEVATIONS ✓ WATER LEVEL UPON COMPLETION ✓ WATER LEVEL UPON COMPLETION ✓ WATER LEVEL IN WELL/PIEZOMETER LOGGED SZ CHECKED CZ	-8					Y					
9 I	-										
GROUNDWATER ELEVATIONS	- 9										
WATER LEVEL UPON COMPLETION VATER LEVEL IN WELL/PIEZOMETER LOGGED : SZ CHECKED : CZ			GROUNDWATER ELE	VATION	٧S		-1				
			abla water level upon CC	MPLETIC	N	-	⊈ v	ATER LEVEL IN WELL/PIEZO			THURBER

						O	RC) (OF BOREHOLE 2	20-05		
		JEC ⁻ ATIO	N :	roven	nent						-	No. 28262
		RTED	0 : March 11, 2020 TED : March 11, 2020				I	N 4	856 244.6 E 604 507.7		SHEET DATUN	1 OF 1 I Geodetic
щ		ΠOD	SOIL PROFILE			SA	MPL	ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - ● Q - X rem V - ● Cpen ▲	ц	
DEPTH SCALE (metres)		BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	Herry Open Open <t< td=""><td>ADDITIONAL LAB. TESTING</td><td>PIEZOMETER OR STANDPIPE INSTALLATION</td></t<>	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
_			GROUND SURFACE ASPHALT: (200mm)		230.00 0.00							
-			SAND, some gravel, brown, moist		0.20	1	GS			0		
			CLAY , silty, some sand to sandy, trace gravel, stiff to hard, grey to brown, moist: (TILL)		229.39 0.61							
- 1						2	SS	11		0		
	ders					3	SS	32	Grain Size Analysis: Gr 6%/ Sa 21%/ Si 49%/ Cl 24%	G -1		
-2	Solid Stem Augers											
- 3	ы М					4	SS	32		G	Ţ	
						5	SS	34		•		
-4						6	SS	24		0		
			END OF BOREHOLE AT 4.42m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH		225.58 4.42							
- 5			BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO SURFACE.				K					
-6						/_						
- 7									7			
-												
-8												
-												
- 9			~									
-												
							_	-				
			abla water level upon CC	OMPL	ETION	l	<u> </u>	∠ v	ATER LEVEL IN WELL/PIEZO	DMETER LOGGED : SZ CHECKED : CZ		THURBEI

				F	REC	O	RE) (OF BOREHOLE 2	20-07					
	ROJ		o 1	over	nent								Proje	ect N	o. 28262
)CA ГAR												SHE	ET 1	OF 1
C	OMF	PLE	TED : March 11, 2020					N 4	856 382.3 E 604 369.0				DAT	UM	Geodetic
Щ	ġ	100	SOIL PROFILE		-	SA	MPL	LES	COMMENTS	SHEAR nat \ rem \		TH: Cu, KPa Q - X Cpen ▲	Ļ	Q	
DEPTH SCALE (metres)		JRING MELL	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	40 	80 1	20 160 		LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
		ы П	GROUND SURFACE	STI	(m)	_		В		10	20 3	30 40		_	
			ASPHALT: (200mm)		231.40 0.00										
			SAND and GRAVEL, grey, moist	۵ ۵	0.20	1	GS			b					
·				۵ ۵	230.64	_		-							
			SAND, some gravel, brown, moist	***	0.76										
- 1			CLAY, silty, some to trace sand, trace gravel, very stiff to hard, brown to grey, moist: (TILL)		0.91	2	ss	11			,				
-				X											
-															
	gers					3	ss	34			2	\rightarrow			
-2	em Au														
	Solid Stem Augers								Grain Size Analysis: Gr 2%/ Sa 17%/ Si 41%/ Cl 40%						
	S					4	SS	27	Gr 2%/ Sa 17%/ Si 41%/ Cl 40%	0					
- 3													\mathcal{P}		
-						_									
-						5	SS	40		°					
-4								0.5							
ŀ					226.98	6	SS	25		°	>				
-	┢		END OF BOREHOLE AT 4.42m. BOREHOLE OPEN AND DRY UPON	1/3/	4.42			Ð							
-			COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS,												
- 5			BENTONTIE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO SURFACE.							7					
			CONTROL.												
-						\land									
-6															
[
·						\leq									
7									Q						
['															
-						<	\bigvee								
ŀ				\backslash											
-8															
-					(
				1											
9/9/20															
GPJ															
8262.															
						Ļ									
IR2S															
URBE			\overline{arphi} water level upon CO	MPL	LETION	I	-1	⊷ v	VATER LEVEL IN WELL/PIEZO	JMETER	LOGGE	ED : SZ			
₽											SHEOK	02			THURBER

					0	RE) (OF BOREHOLE 2	20-0	8						
	ROJEC CATIC	e ,	oven	nent									P	roject N	No. 28262	
	ARTE	D : March 5, 2020 TED : March 5, 2020				I	N 4	856 471.9 E 604 254.7						HEET ATUM	1 OF 1 Geodetic	
	8	SOIL PROFILE			SA	MPL	ES	COMMENTS	S	HEAR S		H: Cu, KP Q - X Cpen ▲	a	(1)		
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT		40 a L /ATER C vp I	B0 1 L ONTENT	20 16 , PERCEN	0 1T 1	ADDITIONAL LAB. TESTING	PIEZOMI OR STANDI INSTALL/	t PIPE
		GROUND SURFACE ASPHALT: (200mm)		233.00 0.00												
		SAND, some silt, some gravel, brown, moist: (FILL)		0.20	1	GS			0							
- 1		CLAY, silty, some sand to sandy, trace gravel, very stiff to hard, brown, moist: (TILL)		232.09 0.91	2	ss	15	Grain Size Analysis: Gr 4%/ Sa 24%/ Si 45%/ Cl 27%		0					Bentonite	
- - -2	Solid Stem Augers				3	SS	35			0					Filter Sand	
- - - 3	Solid Ste	Very Stiff			4	ss	26							2	Softed Screen	
					5	ss	24			c	,					
-4				228.58	6	SS	42								Sand	
- 5		END OF BOREHOLE AT 4.42m. Well installation consists of 25mm diameter Schedule 40 PVC pipe with a 1.52m slotted screen.		4.42												
		WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m) Mar 05/20 Dry - May 26/20 3.00 230.00														
-6																
- 7 -								7								
- - -8					<											
		GROUNDWATER ELE	VA ⁻	LIONS	ـــــ ک	1	I	1	<u> </u>	1	1					
		abla water level upon co	MPL	ETION		Ţ		VATER LEVEL IN WELL/PIEZO 1ay 26, 2020	DMETE	R	LOGGE CHECK		AF CZ		ТН	URBER

						O	RE) (OF BOREHOLE 2	20-09		
PR LO		ECT TIOI	0 1	oven	nent						Project	No. 28262
ST	AR	ΓED	: March 5, 2020						856 526.0 E 604 223.0		SHEET	
									1	SHEAR STRENGTH: Cu. KPa		Geodetic
DEPTH SCALE (metres)	BORING METHOD		SOIL PROFILE	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	AMPL 34,L	BLOWS/0.3m	COMMENTS DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	SHEAR STRENGTH: Cu, KPa nat V - Q - X rem V - Cpen ▲ 40 80 120 160 1 1 1 1 WATER CONTENT, PERCENT wp I -O ^W 1 wl 10 20 30 40	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
		,	GROUND SURFACE	٥ ٥	234.30		+				-	
			ASPHALT: (175mm)		0.00							
-			SAND, some silt, some gravel, brown, moist: (FILL)		0.18	1	GS			0		
-						-			-	Ŭ		
- 1		-	CLAY, silty, sandy to some sand, trace gravel, stiff to firm, brown, moist: (TILL)		233.39 0.91	2	ss	8	Grain Size Analysis: Gr 4%/ Sa 31%/ Si 44%/ Cl 21%	0		
	rgers					3	SS	4				
-2	Solid Stem Augers											
	S		Very stiff to hard			4	SS	20		0		
- 3						5	ss	31		•		
-4					230.24	6	SS	50/ 0.10		0		
			END OF BOREHOLE AT 4.06m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO SURFACE.		4.06							
- 5							K					
-6												
						\langle						
- 7									2			
8												
- 9 - 9			//									
-												
							_	_				
			$\overline{\mathcal{Y}}$ water level upon CO	MPL	ETION			L v	VATER LEVEL IN WELL/PIEZO	DMETER LOGGED : AF CHECKED : CZ		THURBER

						O	RE) (OF BOREHOLE 2	20-10		
		CT ION	: HWY 50 Drainage Impr	oven	nent						Project	No. 28262
ST	ART	ED	: March 5, 2020								SHEET	
CC	r –		· · · · · · · · · · · · · · · · · · ·			_			856 567.9 E 604 157.8			1 Geodetic
ΓE	DOH		SOIL PROFILE			SA	AMPL		COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - ♥ Q - X rem V - ♥ Cpen ▲	RGA	
DEPTH SCALE (metres)	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	40 80 120 160 WATER CONTENT, PERCENT wp	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
			OUND SURFACE	0,	235.80							
[PHALT: (200mm)		0.00							
ŀ		SAI brov	ND, some silt, some gravel to gravelly, wn, moist: (FILL)		0.20	1	GS			0		
ŀ						<u> </u>						
- 1		Der	nse			2	SS	35		0		
									Ourin Oire Asstution			
-2	Solid Stem Augers	Cor	npact			3	SS	13	Grain Size Analysis: Gr 22%/Sa 54%/ Si & Cl 24%	0		_ <u>⊽</u> .
[Solid Ster					4	ss	9				
- 3		Loo	ise, wet								\mathcal{I}	
		Ver	y loose		232.29	5	ss	3		0		
		CL/ to v	AY, silty, some sand, trace gravel, stiff ery stiff, brown to grey, moist: (TILL)		3.51							
-4					231.38	6	SS	29		•		
		ENI BOI AT	D OF BOREHOLE AT 4.42m. REHOLE OPEN AND WATER LEVEL 2.1m UPON COMPLETION. REHOLE BACKFILLED WITH		4.42							
- 5 -		BEN	NTONITE HOLEPLUG AND CUTTINGS, EN ASPHALT COLDPATCH TO RFACE.							Ŷ		
-												
-6								/				
			~			\langle						
- 7									2			
ŀ						<						
-8												
- - 9												
-												
L												
			GROUNDWATER ELE									
- 9 - -		-	$\overline{\mathbb{Y}}$ water level upon CC	MPL	ETION	l		L v	ATER LEVEL IN WELL/PIEZ	DMETER LOGGED : AF CHECKED : CZ		THURBER
<u>ــــــــــــــــــــــــــــــــــــ</u>												

					0	R) (OF BOREHOLE 2	20-11		
	ROJEC DCATIO	0 1	over	nent						Project	No. 28262
ST	ARTE						N 4	856 638.0 E 604 108.5		SHEET DATUM	1 OF 1 1 Geodetic
щ	DO	SOIL PROFILE			SA	AMPI	ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - ♥ Q - X rem V - ♥ Cpen ▲	<u>ں</u>	
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	rem V - ● Cpen ▲ 40 80 120 160 1 1 1 1 WATER CONTENT, PERCENT wp - - 10 20 30 40	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
		GROUND SURFACE		236.90							
-		ASPHALT: (175mm) SAND, some silt, some gravel, brown, moist: (FILL)	***	0.00 0.18							
ł		moist: (FILL)			1	GS			0		
- 1		SAND, some silt, some gravel, trace clay, dense to loose, brown, moist: (FILL)		235.99 0.91	2	000	31				
ŀ		dense to loose, brown, moist: (FILL)			2	00	31		0		
ŀ											
t											
-2	ugers				3	SS	10		0		
-	Solid Stem Augers			234.61							
-	olid S	CLAY, silty, some sand to sandy, trace gravel, firm to stiff, brown, moist		2.29				Grain Size Analysis:			
İ.	Ŵ				4	SS	7	Gr 6%/ Sa 24%/ Si 42%/ Cl 28%			
- 3										\mathcal{A}	
ł					_						
ŀ					5	SS	14		o		
-4											
ŀ					6	SS	11		0		
ŀ		END OF BOREHOLE AT 4.06m. BOREHOLE OPEN AND DRY UPON		232.48 4.42							
·		COMPLETION.									
- 5		BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO									
		SURFACE.									
ŀ			1								
ŀ				$\langle -$							
-6					$\left(\right)$						
ľ							-				
·					6	-					
ŀ											
7								7			
ľ											
ŀ					<	V					
ŀ			\backslash								
-8											
ľ			\sum	/							
ŀ											
ŀ											
- 9		×									
ľ											
ŀ											
t											
F		GROUNDWATER ELE	VA.	TIONS		1	1				
		$\overline{ au}$ water level upon CC				Ţ	L v	ATER LEVEL IN WELL/PIEZO	OMETER LOGGED : MA		
								,	CHECKED : CZ		THURBER
-											INURDER

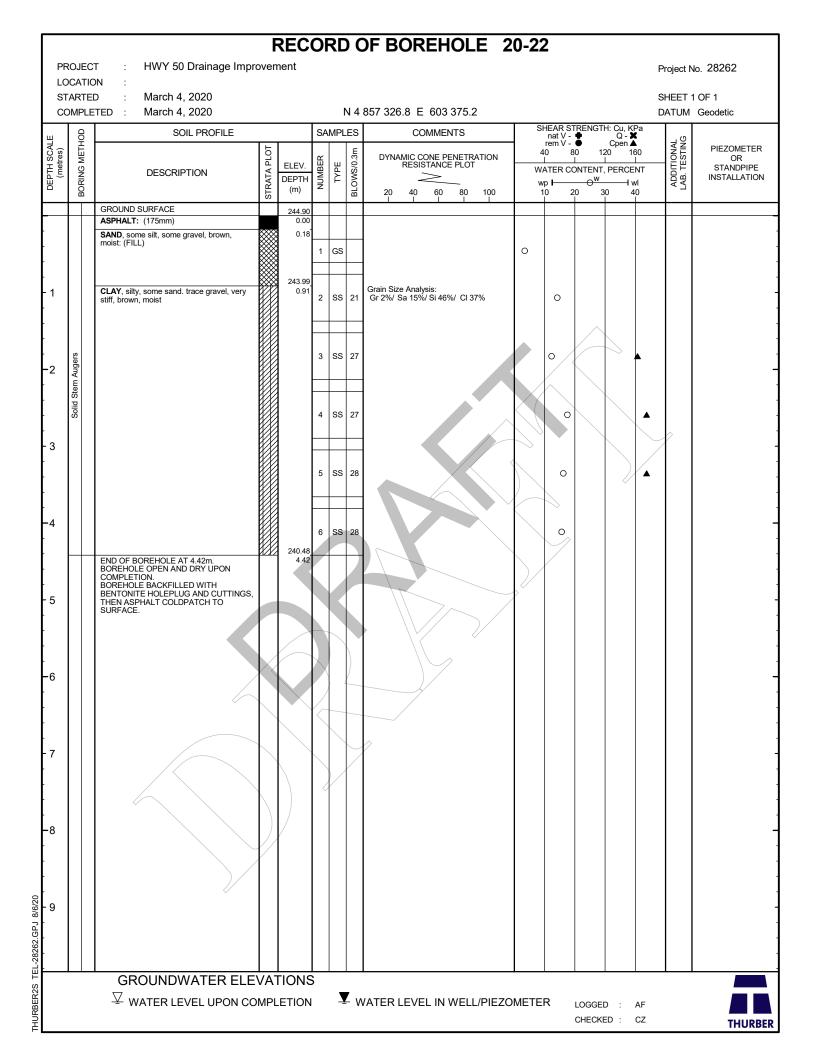
				REC	0	RĽ) (OF BOREHOLE 2	20-12		
	ROJE	ECT : HWY 50 Drainage Imp FION :	rover	ment						Project	No. 28262
ST	ART	TED : March 9, 2020								SHEET	
CC		LETED : March 9, 2020			_			856 678.3 E 604 043.7			Geodetic
U V	BORING METHOD	SOIL PROFILE			SA	AMPL	1	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - ● Q - ¥ rem V - ● Cpen ▲	RGAL	PIEZOMETER
DEPTH SCALE (metres)	U ME	DECODIPTION	STRATA PLOT	ELEV.	BER	Щ Ш	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	40 80 120 160	ADDITIONAL LAB. TESTING	OR
DEP L	ORIN	DESCRIPTION	TRAT/	DEPTH (m)	NUMBER	ТҮРЕ	SLOW	20 40 60 80 100	wp	ADD LAB.	INSTALLATION
		GROUND SURFACE	<u>ی</u>	237.40	\vdash		ш 				
		ASPHALT: (200mm) SAND, some silt, and gravel, brown, moist:		0.00							
		(FILL)		0.20					0		
				000.40	1	GS					
1		SAND , gravelly, some silt, trace clay, compact, brown, moist: (FILL)		236.49 0.91	2	ss	14		0		Bentonite
2	Igers				3	SS	20		0		
Z	em Au										
	Solid Stem Augers				4		16	Grain Size Analysis: Gr 29%/Sa 49%/ Si & Cl 22%			Filter Sand
	S				4	00	10	Gi 29%/ Sa 49%/ Si & Ci 22%			⊻ <u> </u>
3							_			\sum	Slotted Screen
					5	ss	15				Slotted Screen
4											
-					6	SS	13				Sand
	\vdash	END OF BOREHOLE AT 4.42m. Well installation consists of 25mm diameter		232.98 4.42		-					<u></u>
		Well installation consists of 25mm diameter Schedule 40 PVC pipe with a 1.52m slotted screen.									
5											
		WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m) Mar 09/20 Dry -									
		Mar 09/20 Dry - May 26/20 2.80 234.60									
6			\times								
					\langle	$\left[\right]$					
_								\sim			
7											
					<	Y					
8											
			\checkmark								
9											
5											
					Ĺ						
							7				
		abla water level upon Co	JMPI	LETION		-1		VATER LEVEL IN WELL/PIEZO lay 26, 2020	DMETER LOGGED : M/ CHECKED : CZ		
									525KED . 02		THURBE

			RE	ECO	DRI	DO	OF BOREHOLE 2	20-13		
		•	provemen	nt					Project N	No. 28262
ST	ART	TION : TED : March 10, 2020 PLETED : March 10, 2020				N 4	856 744.4 E 603 998.8		SHEET [,] DATUM	1 OF 1 Geodetic
	8	SOIL PROFILE			SAMF	LES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - ● Q - X rem V - ● Cpen ▲		
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	TA DE	_EV. PTH (m)	NUMBER	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT		ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
_		GROUND SURFACE ASPHALT: (200mm)	2	37.80 0.00						
ŀ		SAND, some silt, some gravel, brown,		0.20						
ŀ		moist: (FILL)			1 G	6		o		
- 1 - 1		SAND, silty, some clay, trace gravel, compact, brown, moist: (FILL)	2	36.89 0.91	2 55	6 25	- -	0		
-2	n Augers	CLAY, silty, sandy, trace gravel, stiff to very stiff, brown, moist: (TILL)	2	36.28 1.52	3 55	5 11	Grain Size Analysis: Gr 4%/ Sa 23%/ Si 46%/ Cl 27%	0		
-	Solid Stem Augers			-	4 55	6 30		•	2	
- 3				-	5 55	6 27		•		
- -4 -		Hard END OF BOREHOLE AT 4.42m.	2	33.38	6 55	3 71		0		
- 5 -		BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTING THEN ASPHALT COLDPATCH TO SURFACE.	S,							
- - -6										
- - -										
- 7										
8										
- - 9										
-										
ŀ		GROUNDWATER EL					I			
- 9 - - -		\overline{Y} water level upon (-	⊻ v	VATER LEVEL IN WELL/PIEZO	DMETER LOGGED : MA CHECKED : CZ		THURBER
										HIUKBER

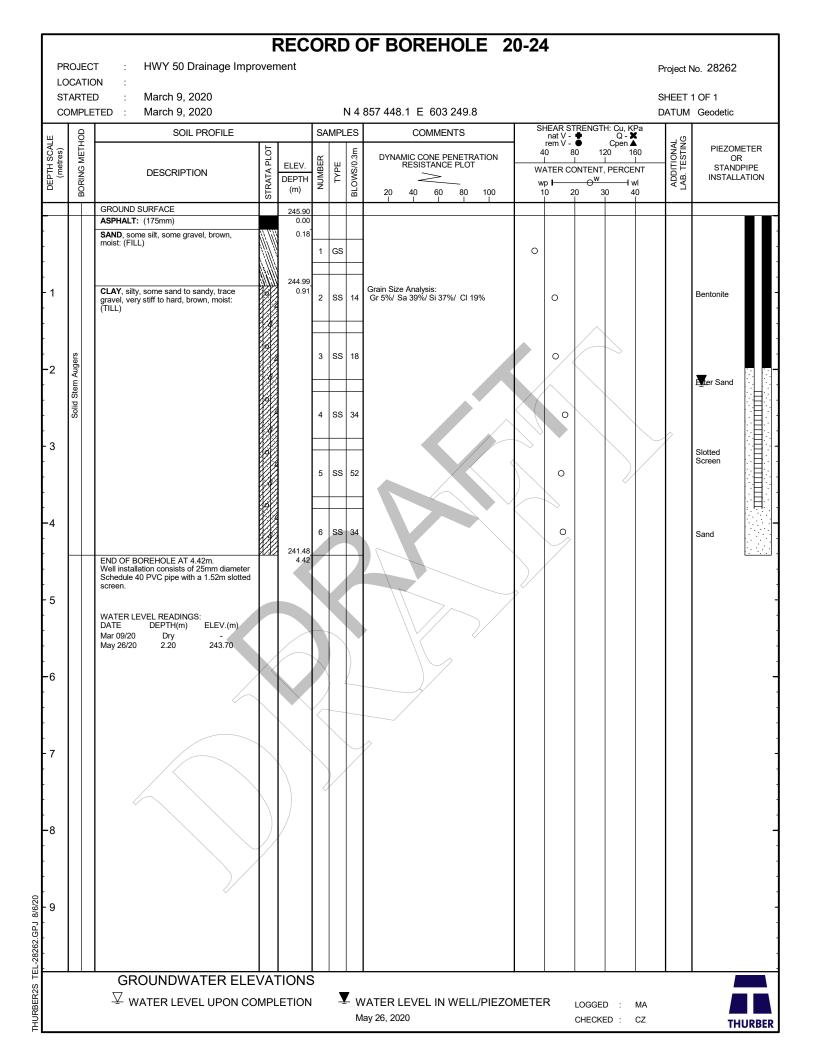
						O	RE) (OF BOREHOLE 2	20-14		
		ECT TIOI	0 1	oven	nent						Project l	No. 28262
		TED PLET	9 : March 9, 2020 TED : March 9, 2020				I	N 4	856 800.8 E 603 918.1		SHEET DATUM	1 OF 1 Geodetic
	Ç						MPL	ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - ● Q - X rem V - ● Cpen ▲		1
DEPTH SCALE (metres)	BOPING METHOD		DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER		BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	Initial Cpen A rem V - € Cpen A 40 80 120 160 1 1 1 1 WATER CONTENT, PERCENT wp - ⊕ ^W wl 10 20 30 40	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
			GROUND SURFACE ASPHALT: (175mm)		237.90 0.00							
		ŀ	SAND and SILT, trace gravel, brown, moist: (FILL)	***	0.00							
			moist: (FILL)			1	GS			0		
· 1		-	CLAY, silty, sandy, trace gravel, very stiff, brown, moist: (TILL)		236.99 0.91	2	ss	19	Grain Size Analysis: Gr 2%/ Sa 26%/ Si 41%/ Cl 31%	0		
-2	Solid Stem Augers					3	SS	27		0		
	Solid S		Hard to very stiff			4	SS	34				
- 3 - -						5	SS	36		•		
-4 -						6	SS	23		0		
			END OF BOREHOLE AT 4.42m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS,		233.48 4.42							
- 5			THEN ASPHALT COLDPATCH TO SURFACE.									
- - -6												
						\langle						
- 7									2			
- - 8						<						
					×							
- 9												
			GROUNDWATER ELE									
			$\overline{ au}$ water level upon co	MPL	ETION	I		Ľν	VATER LEVEL IN WELL/PIEZO	DMETER LOGGED : MA CHECKED : CZ		

LO ST/	OJEC CATI ARTE	N :	oven	nent							Draia at N	
ST										l	Projectiv	lo. 28262
00	MPL	D : April 7, 2020 ETED : April 7, 2020				1	N 4	856 888.0 E 603 850.7		I	SHEET 1 DATUM	OF 1 Geodetic
щ	ЦОБ	SOIL PROFILE			SA	MPL	ES	COMMENTS	SHEAR STRENGT nat V - ● rem V - ●	H: Cu, KPa Q - X	ט נ	
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	40 80 11 WATER CONTENT wp	20 160 PERCENT	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
		GROUND SURFACE ASPHALT: (150mm)		238.60 0.00								
-		SAND, trace silt and gravel, trace oxide, dense, brown, moist: (FILL)		0.15	1	ss	46		0			
- 1 - 1		CLAY, silty, sandy, trace to some gravel, very stiff to hard, brown, moist: (TILL)		237.53 1.07	2	ss	24		0		$\left \right $	
- -2	Solid Stem Augers				3	ss	48		0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	•	
-	Ň				4	SS	63		o	>>		
-3				234.94	5	ss	66	Grain Size Analysis: Gr 16%/Sa 21%/Si 40%/Cl 23%	o	>>		
-4 - -		END OF BOREHOLE AT 3.66m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO SURFACE.		3.66								
- 5												
-6 - -												
- 7 - 7 -								2				
- -8												
- - - 9												
-												
- 9		GROUNDWATER ELE				<u> </u>	Z w	ATER LEVEL IN WELL/PIEZO	OMETER LOGGE CHECKI			

					0	RE) (OF BOREHOLE 2	0-1	6						
	ROJEC DCATIO	o 1	oven	nent									Ρ	roject I	lo. 28262	
ST	ARTE					I	N 4	856 940.1 E 603 773.5						HEET ATUM	1 OF 1 Geodetic	
щ	G	SOIL PROFILE			SA	MPL	ES	COMMENTS	S	HEAR S		H: Cu, KF Q - X Cpen ▲	Pa	, ن		
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT		40 8 ⊥ /ATER Ci vp I	30 1: L ONTENT	20 16	50 NT 1	ADDITIONAL LAB. TESTING	PIEZOME OR STANDPI INSTALLA	IPE
		GROUND SURFACE ASPHALT: (200mm)		239.70 0.00												
		SAND, some silt, some gravel, brown, moist: (FILL)		0.20	1	GS			0							
- 1		SAND, silty, some clay, trace gravel, compact, brown, moist: (FILL)		238.79 0.91	2	ss	13			0					Bentonite	
	ø	CLAY, silty, some sand to sandy, trace to some gravel, hard, brown, moist: (TILL)		238.25 1.45			30	Grain Size Analysis: Gr 5%/ Sa 21%/ Si 46%/ Cl 28%		0 /		$\sum_{i=1}^{n}$				
-2	Solid Stem Augers					33	30	Gi 376 34 2176 314076 Ci 2076							Filter Sand	
- 3	Solid				4	SS	47			0				7	-	
					5	SS	42			0					Sotted Screen	
-4		Very Stiff			6	SS	20			0					Sand	
		END OF BOREHOLE AT 4.42m. Well installation consists of 25mm diameter Schedule 40 PVC pipe with a 1.52m slotted screen.		235.28 4.42											Į	
- 5		WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m) Mar 10/20 Dry -							2							
-6		Mar 10/20 Dry - May 26/20 3.10 236.60														
					\langle											
- 7 - 7								2								
-8																
				X												
- 9																
- 07	_	GROUNDWATER ELE				_	_		_			_	_	_		
HUKDER		☑ WATER LEVEL UPON CO	DMPL	ETION		Ţ		/ATER LEVEL IN WELL/PIEZC ay 26, 2020	METE	R	LOGGE		MA CZ		тни	JRBER


PR	OJEC	T : HWY 50 Drainage Impr			O	RE) (DF BOREHOLE 2	20-17	Project	No. 28262
LO ST	CATIO	DN : D : March 10, 2020	oven							SHEET	1 OF 1
CC		TED : March 10, 2020						857 011.7 E 603 723.6		DATUM	Geodetic
DEPTH SCALE (metres)	BORING METHOD	SOIL PROFILE	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	JAPI TYPE	BLOWS/0.3m	COMMENTS DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	SHEAR STRENGTH: Cu, KPa nat V - Q - X rem V - Cpen ▲ 40 80 120 160 1 1 1 1 WATER CONTENT, PERCENT wp I - O ^W I wl 10 10 30 40	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
_		GROUND SURFACE ASPHALT: (200mm)		240.90 0.00							
-		SAND, some silt, some gravel, brown, moist: (FILL)		0.20	1	GS			0		
- - 1 -		CLAY, silty, some sand, trace to some gravel, stiff to very stiff, brown, moist: (TILL)		239.99 0.91	2	ss	13		0		
-2	Solid Stem Augers				3	SS	26	Grain Size Analysis: Gr 1%/ Sa 17%/ Si 47%/ Cl 35%	01		
- - - 3	Solid St	Hard			4	SS	45		0	Þ	
-					5	SS	47		0		
-4				236.48 4.42	6	SS	34		0		
- - 5 -		END OF BOREHOLE AT 4.42m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO SURFACE.		4.92							
- - -6 -											
- 7								2			
-8 -											
- 9 - 9 -											
					Ĺ						
		GROUNDWATER ELE				1	<u>v</u>	ATER LEVEL IN WELL/PIEZO	DMETER LOGGED : MA CHECKED : CZ		

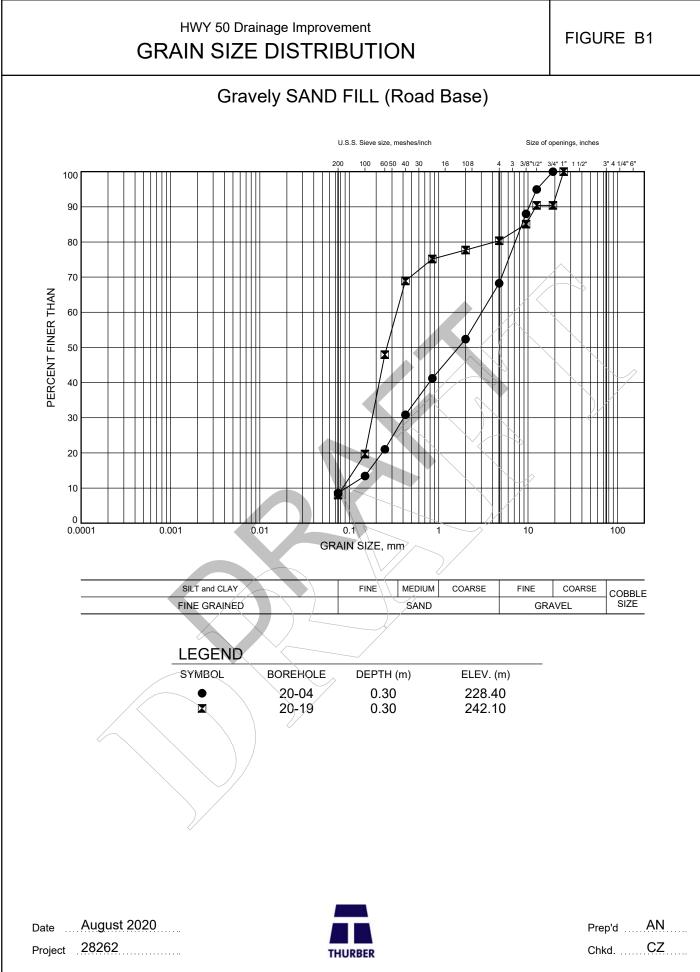
LOC STA CON	ARTE MPLE	DN : D : March 9, 2020	oven	nent						Project N	Vo 28262
DEPTH SCALE (metres)	MPLE										
	Q	TED . Watch 9, 2020				١	۷48	357 054.5 E 603 656.9		SHEET DATUM	1 OF 1 Geodetic
	0	SOIL PROFILE			SA	MPL	.ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - ● Q - X rem V - ● Cpen ▲	. ()	
1	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	rem V - € Cpen ▲ 40 80 120 160 ↓ ↓ ↓ WATER CONTENT, PERCENT wp ↓ ─ ─ ₩ ↓ ↓ 10 20 30 40	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
1	+	GROUND SURFACE ASPHALT: (200mm)		241.60 0.00							
1		SAND, some silt, trace gravel, brown, moist: (FILL)		0.20							
1					1	GS			0		
		CLAY, silty, trace sand and gravel, very stiff to hard, brown, moist: (TILL)		240.69 0.91	2	SS	18				
		Sun to hard, brown, moist. (HEE)									
Quere	gers				3	SS	25	Grain Size Analysis: Gr 4%/ Sa 10%/ Si 49%/ Cl 37%			
·2	solid Stem Augers										
, Lilo	Solid				4	SS	45		0	~	
3											
					5	SS	44		• •		
·4					6	SS	31		0		
	_	END OF BOREHOLE AT 4.42m. BOREHOLE OPEN AND DRY UPON COMPLETION. BOREHOLE BACKFILLED WITH PERIFICIE DATE OF MONTH		237.18 4.42							
5		THEN ASPHALT COLDPATCH TO									
		SURFACE.									
·6											
.0											
					\langle			~			
7								/			
					4						
·8											
9											
-											
						_	,				
		abla water level upon CO	MPL	ETION		<u> </u>	- w	ATER LEVEL IN WELL/PIEZC	METER LOGGED : MA CHECKED : CZ		THURBEI

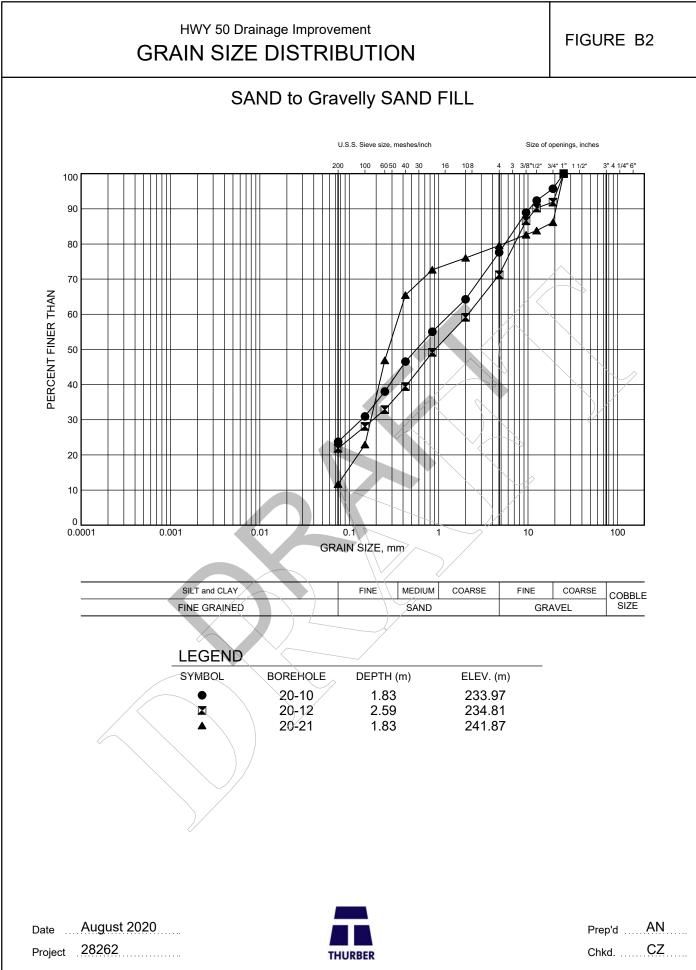

					0	RD) (OF BOREHOLE 2	20-1	9						
LC	ROJE DCAT	TION :	proven	noill										-	No. 28262	
	TART	ED : April 7, 2020				١	N 4	857 127.1 E 603 605.7						HEET ATUM	1 OF 1 Geodetic	
	B				SA	MPL		COMMENTS	5	HEAR S		ſH: Cu, KP Q - X Cpen ▲				
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	түре	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT 20 40 60 80 100	N N	40 /ATER C wp	80 1 1 ONTENT 	120 16 1 1 1, PERCEN	0 1T I	ADDITIONAL LAB. TESTING	PIEZOM OR STANDI INSTALL	l PIPE
	$\left \right $	GROUND SURFACE ASPHALT: (150mm)		242.40 0.00												
-	ngers	SAND, gravelly, trace silt, very dense, brown, dry: (FILL)		0.15 241.64	1	SS	52	Grain Size Analysis: Gr 20%/ Sa 72%/ Si & Cl 8%	0							
- - 1 -	Solid Stem Augers	CLAY, silty, some sand to sandy, trace gravel, very stiff, brown, moist: (TILL)		0.76		ss	29			0			•		Bentonite	
- - -2					3	ss	47	Grain Size Analysis: Gr 8%/ Sa 25%/ Si 45%/ Cl 22%		0			>>		Ter Sand	
- 3					4	ss	87			0			~	2	Slotted Screen	
		END OF BOREHOLE AT 3.66m.		238.74 3.66		ss	72			0			>>,		Corosin	
-4		Well installation consists of 25mm diameter Schedule 40 PVC pipe with a 1.52m slotter screen.	d													
- 5 -		DATE DEPTH(m) ELEV.(m) Apr 07/20 Dry - May 26/20 2.10 240.30							>)/							
- 6 -																
- - 7 -																
8 8																
- - 9 -																
					Ĺ											
- 9		GROUNDWATER EL ⊈ WATER LEVEL UPON C				Ţ		'ATER LEVEL IN WELL/PIEZC ay 26, 2020	OMETE	R	LOGGE CHECK		SB CZ		ТН	URBER

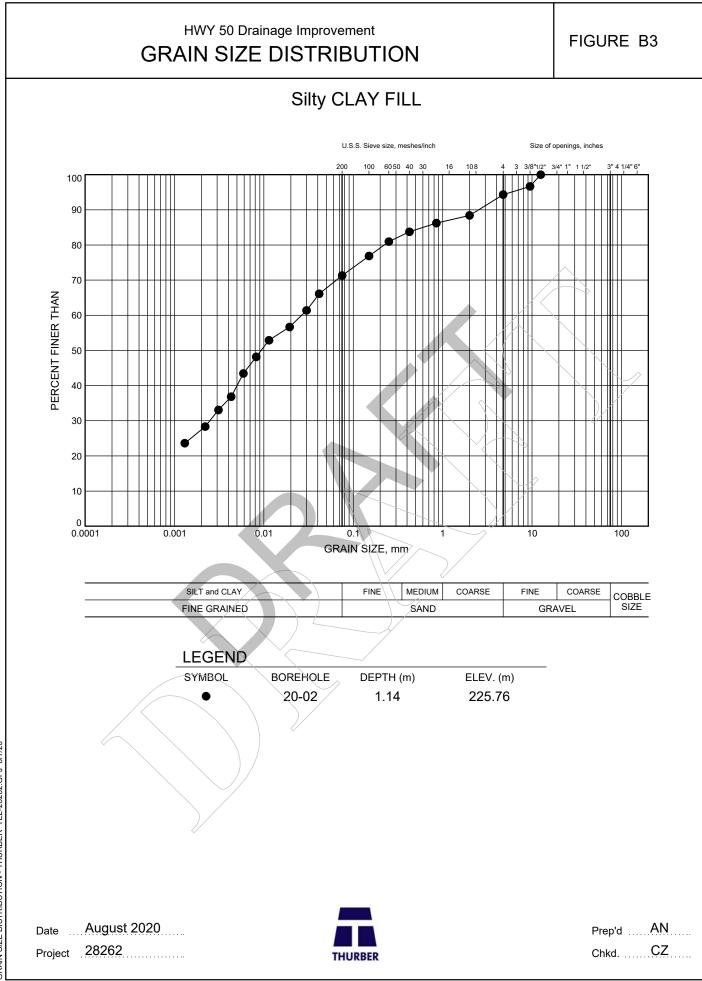
					O	RD) (OF BOREHOLE 2	20-20		
	OJEC	o 1	overn	ICIIL						Project	No. 28262
	ARTE	D : March 5, 2020 TED : March 5, 2020				I	N 4	857 184.7 E 603 516.6			1 OF 1 I Geodetic
щ	OD	SOIL PROFILE			SA	MPL	ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - ● Q - X rem V - ● Cpen ▲	, U	
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	rem V - ● Cpen ▲ 40 80 120 160 H H H WATER CONTENT, PERCENT wp → O ^W H wl 10 20 30 40 H H	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
_				243.00							
-		ASPHALT: (200mm) SAND, some silt, trace gravel, brown,	****	0.00							
-		moist: (FILL)		0.20	1	GS			0		
- 1		Loose			2	SS	9		0		
-		CLAY, silty, trace sand and gravel, firm, grey, moist: (FILL)		241.63 1.37							
-2	n Augers				3	ss	6				Filter Sand
-	Solid Stem Augers	CLAY, silty, some sand to sandy, trace gravel, very stiff to hard, grey, wet: (TILL)		240.71 <u></u> 2.29	4	ss	16		0		
- 3					5	ss	31	Grain Size Analysis: Gr 5%/ Sa 24%/ Si 45%/ Cl 26%			Slotted Screen
- 4					6	SS	28				Sand
		END OF BOREHOLE AT 4.42m. Well installation consists of 25mm diameter Schedule 40 PVC pipe with a 1.52m slotted screen.	<u>x.</u> x.	238.58 4.42							[<u>····</u>
- 5 - -		WATER LEVEL READINGS: DATE DEPTH(m) ELEV.(m) Mar 05/20 3.73 239.27 May 26/20 1.10 241.90									
-6 -) .					
- -					\langle			2			
- 7											
8											
-											
- 9											
					Ĺ						
							,				
		abla water level upon CC	MPL	ETION		7		/ATER LEVEL IN WELL/PIEZ(ay 26, 2020	OMETER LOGGED : AF CHECKED : CZ		THURBE

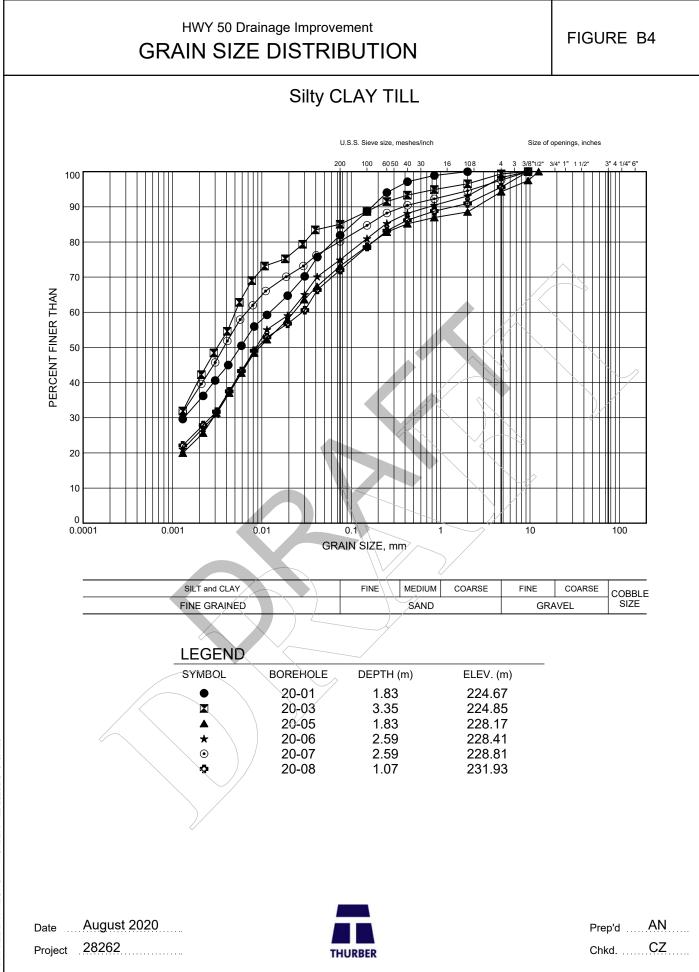
				REC	0	RD	\mathbf{O}	OF BOREHOLE 2	0-21		
	ROJEC	0 1	rover	ment						Project I	No. 28262
	ARTE	D : March 4, 2020								SHEET	1 OF 1
CC		ETED : March 4, 2020				1	N 4	857 262.5 E 603 469.9		DATUM	Geodetic
Щ	Ę	SOIL PROFILE			SA	MPL	ES	COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - ♥ Q - X rem V - ♥ Cpen ▲	μĻ	
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	ТҮРЕ	BLOWS/0.3m	DYNAMIC CONE PENETRATION RESISTANCE PLOT	40 80 120 160 1 1 1 WATER CONTENT, PERCENT wp	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
	ß		STF	(m)	2		BL	20 40 60 80 100	10 20 30 40		
		GROUND SURFACE ASPHALT: (175mm)		243.70 0.00						_	
		SAND, some silt, some gravel, brown, moist: (FILL)		0.18							
				8	1	GS			0		
ŀ											
- 1		Dense to compact			2	ss	33		0		
		Dense to compact									
Ĩ	ers			×.	3	ss	16	Grain Size Analysis: Gr 20%/Sa 68%/ Si & Cl 12%	0		
-2	u Aug			241.57							
-	Solid Stem Augers	CLAY, silty, some sand, trace gravel, very stiff, grey, moist: (TILL)		2.13							
-	Solic				4	ss	24		o		
-										\sim	
- 3											
					5	SS	26		• ·		
-											
-4					6	SS	26		0		
-				239.28							
-		END OF BOREHOLE AT 4.42m. BOREHOLE OPEN AND DRY UPON COMPLETION.									
- 5		BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO									
		SURFACE.									
-											
-				$\langle -$							
-6			\times								
-											
-					$\langle \langle \rangle$						
-						\setminus		~			
- 7							\geq				
-				\backslash							
-						ĺ					
-											
-8											
-											
-											
- -											
- 9											
ŀ											
ŀ											
- 9		GROUNDWATER ELE	VA	TIONS	ــــــ ک	I	I				
		$\overline{\mathcal{Y}}$ water level upon CC				Ţ	Z w	ATER LEVEL IN WELL/PIEZO	METER LOGGED : AF		
								· ·	CHECKED : CZ		THURBER

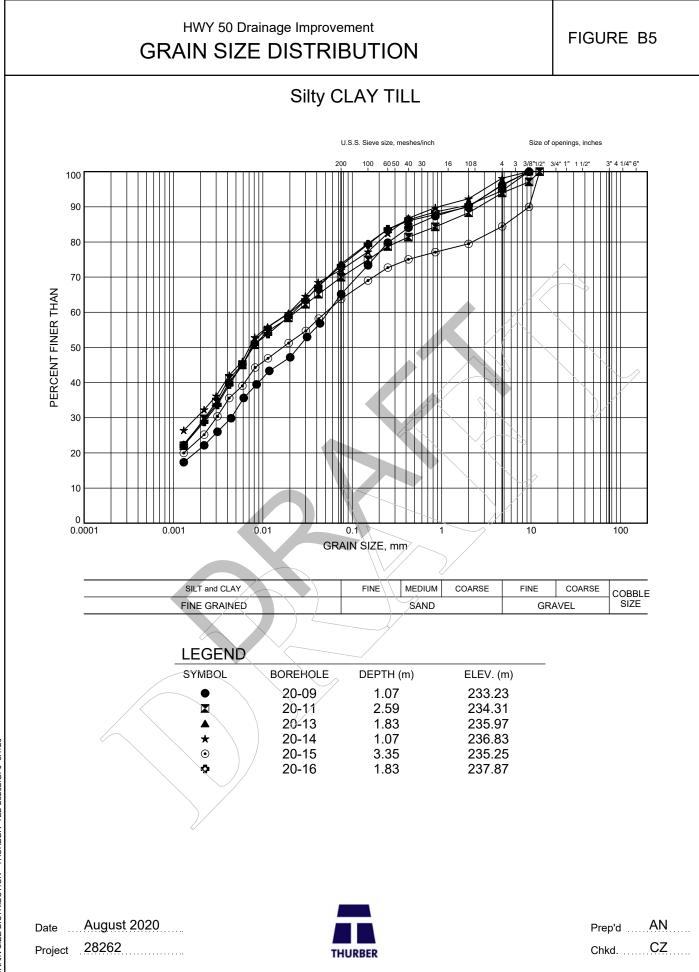
			F	REC	0	RE) (OF BOREHOLE 2	20-23		
	ROJE	0 1	over	ment						Project	No. 28262
ST	ARTI	ED : March 4, 2020								SHEET	
C	-	ETED : March 4, 2020						857 397.9 E 603 330.7			/ Geodetic
) ALE	ТНОБ	SOIL PROFILE	F	r –	SA	MPL		COMMENTS	SHEAR STRENGTH: Cu, KPa nat V - • Q - X rem V - • Cpen A	ING	PIEZOMETER
DEPTH SCALE (metres)	BORING METHOD	DESCRIPTION	A PLO	ELEV.	NUMBER	ТҮРЕ	S/0.3n	DYNAMIC CONE PENETRATION RESISTANCE PLOT	40 80 120 160	ADDITIONAL LAB. TESTING	OR
DEP	BORIN	BEOORI HON	STRATA PLOT	DEPTH (m)	NUN	È	BLOWS/0.3m	20 40 60 80 100	wp H 0 W wl 10 20 30 40	ADI	INSTALLATION
_		GROUND SURFACE	0,	245.30							
		ASPHALT: (200mm) SAND, some silt, some gravel, brown,	**	0.00							
İ		moist: (FILL)			1	GS			0		
-											
- 1		Loose			2	ss	7		0		
-				243.78		-					
ŀ		CLAY , silty, some sand, trace gravel, firm to very stiff, grey, moist: (TILL)		1.52				Grain Size Analysis: Gr 0%/ Sa 14%/ Si 44%/ Cl 42%			
-2	Augers				3	SS	7	Gr 0%/ Sa 14%/ Si 44%/ Cl 42%		-	
ŀ	Solid Stem Augers										
Į.	Solid				4	ss	21				
•										\searrow	
- 3						-					
ŀ					5	SS	21		0		
Ţ											
-4					6	SS	18				
Ì				240.88							
-		END OF BOREHOLE AT 4.42m. BOREHOLE OPEN AND DRY UPON COMPLETION.		4.42							
- 5		BOREHOLE BACKFILLED WITH BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO									
		SURFACE.									
Ì						\land					
-					\land						
-6		/									
-					/_						
ł											
- 7							\searrow	7			
ł				\backslash							
-					<	1					
-8											
F°			\downarrow	/							
ŀ											
_											
9/9/2											
2.GPJ											
L-2826											
2S TE	•	GROUNDWATER ELE									
		abla water level upon CC	MPL	LETION	I	7	Ľγ	ATER LEVEL IN WELL/PIEZO			
Ĩ									CHECKED : CZ		THURBER

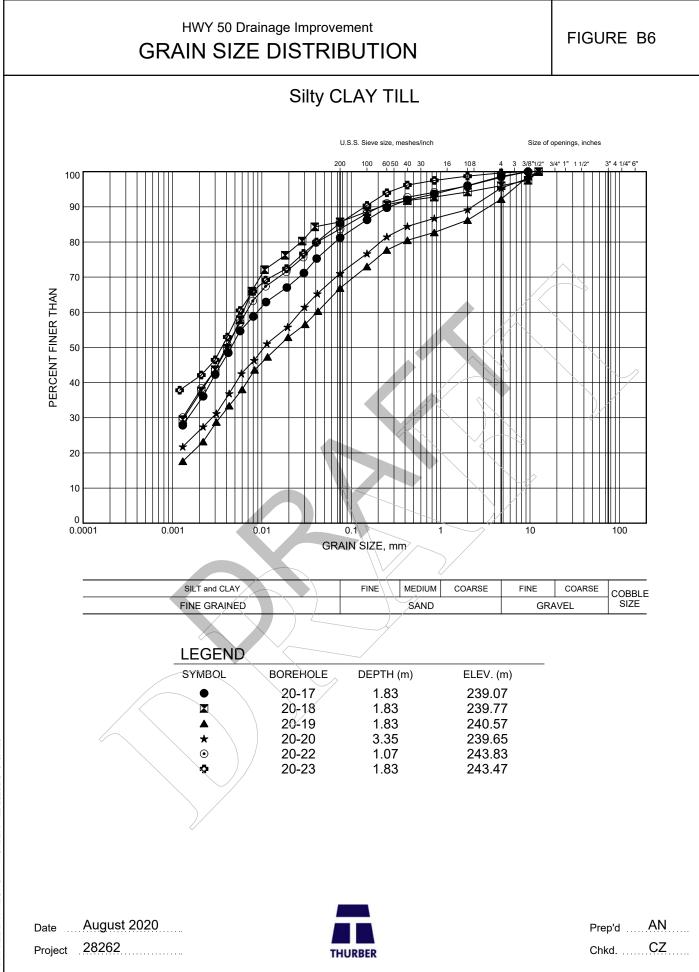


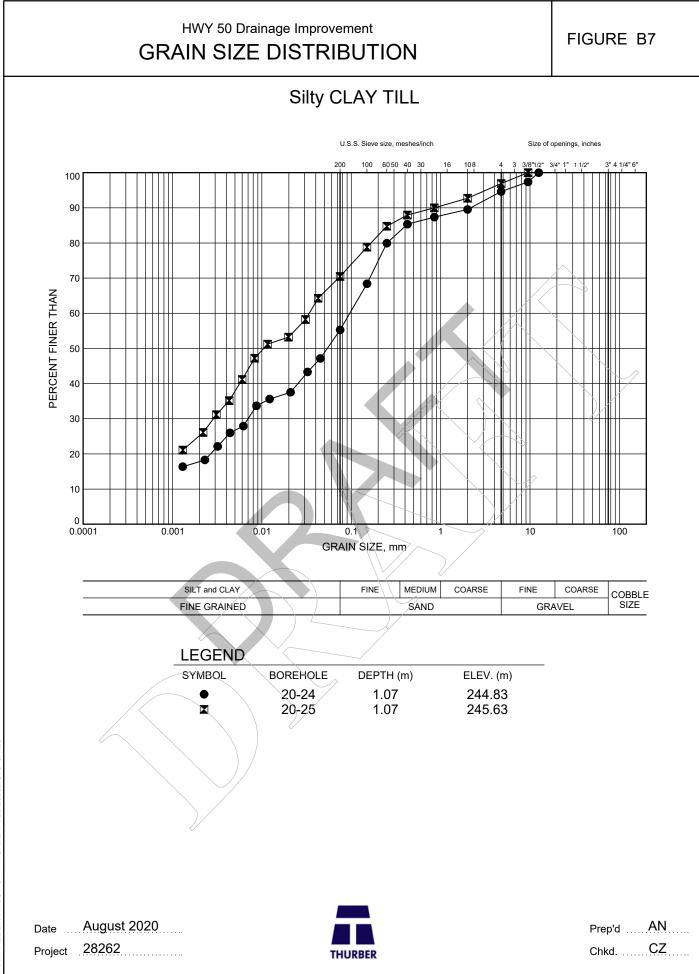

LOCATION :: :: Definition :: Select of 1 STATED :: Mach 4, 2020 N 457 530.1 E 603.194.3 DETIN Groups :: UNDERTED :: Mach 4, 2020 N 457 530.1 E 603.194.3 DETIN Groups :: UNDERTED :: Mach 4, 2020 N 457 530.1 E 603.194.3 DETIN Groups :: UNDERTED :: Mach 4, 2020 N 457 530.1 E 603.194.3 DETIN Groups :: UNDERTED :: Mach 4, 2020 N 457 530.1 E 603.194.3 DETIN Groups :: UNDERTED :: Mach 4, 2020 N 457 530.1 E 603.194.3 DETIN Groups :: UNDERTED :: Mach 4, 2020 N 457 530.1 E 603.194.3 DETIN Groups :: UNDERTED :: Mach 4, 2020 N 457 530.1 E 603.194.3 DETIN Groups :: UNDERTED :: Mach 4, 2020 N 457 530.1 E 603.194.3 DETIN Groups :: N 457 530.1 E 603.194.3 UNDERTED :: Mach 4, 2020 N 457 530.1 E 603.194.3 DETIN Groups :: N 457 530.1 E 603.194.3 DETIN Groups :: 1 Mach 4, 2020 Mach 4, 2020 N 457 530.1 E 603.194.3 DETIN Groups :: N 457 530.1 E 603.194.3 DETIN Groups :: 1 Mach 4, 2020 Mach 4, 2020 N 457 530.1 E 603.194.3 DET						O	RD) (OF BOREHOLE 2	20-2	5					
COUNTERED: March 2,020 N 497 50.1 E 601 843 DAUM Code 30 mod of the service Source Propriet				oven	hent									Pi	roject N	lo. 28262
Stress Description Stress St							1	N 4	857 530.1 E 603 184.3							
Stress Description Stress St	ш	8	SOIL PROFILE			SA	MPL	ES	COMMENTS	S	HEAR S nat V -		FH: Cu, KF Q - 🗙	'a	. (1)	
-2 Suff -00 <td>DEPTH SCAL (metres)</td> <td>BORING METH</td> <td>DESCRIPTION</td> <td>STRATA PLOT</td> <td>DEPTH</td> <td>NUMBER</td> <td>түре</td> <td>BLOWS/0.3m</td> <td>\geq</td> <td>v</td> <td>40 ⊥ /ATER C /p I</td> <td>80 1 L ONTENT</td> <td>120 16</td> <td>0 NT I</td> <td>ADDITIONAL LAB. TESTING</td> <td>PIEZOMETER OR STANDPIPE INSTALLATION</td>	DEPTH SCAL (metres)	BORING METH	DESCRIPTION	STRATA PLOT	DEPTH	NUMBER	түре	BLOWS/0.3m	\geq	v	40 ⊥ /ATER C /p I	80 1 L ONTENT	120 16	0 NT I	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
1 Image: construction of gravel, brown, model (cital) 0.2 1 0.2 1 0.2 1 0.2 0.2 1 0.2 1 0.2 1 0.2 1 0.2 1 0.2 1 0.2 1 0.2 1 0.2 1 0.2 1 0.2 1 0.2 1 0.2 1 0.2 1 0.2 1 0.2 1 0.2 1 0.2 1 0.2 1 0.2 1 0.2 1 0.2 1 0.2 1 0.2 1.2 1.2 1 0.2 1.2 1.2 1 0.2 1.2 1.2 1 0.2 1.2 1.2 1 0.2 1.2 1.2 1 0.2 1.2 1.2 1 0.2 1.2 1.2 1 0.2 1.2 1.2 1 0.2 1.2 1.2 1 0.2 1.2 1.2 1 0.2 1.2 1.2 1 1.2 <	-															
1 Image: State in the state			. ,													
1 CAV. Bith come same is usary, tool 01 2 81 0			moist: (FILL)			1	GS			0						
1 CLAY, link, some and to samly, ince graves, wey still, how, mail; (TLL) 0 1 -2 1 1 1 1 -3 1 1 1 1 -4 5 15 1 0 -4 5 15 1 0 -4 5 15 1 0 -4 5 15 1 0 -5 1 1 1 1 -6 1 1 1 1 -7 1 1 1 1					245 70											
2 yei ye	1		CLAY, silty, some sand to sandy, trace			2	SS	17	Grain Size Analysis: Gr 3%/ Sa 26%/ Si 45%/ Cl 26%		0					
-2 0 1 3 0 4 55 55 51 0 4 0 5 0			gravel, very still, brown, moist. (The													
-2 0 4 55 34 0 7 0 7 0 0 4 0 0 4 0 0 4 0 7 0 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0 0 4 0 0 0 4 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																
3 Image: Suff mean of the set		sis				3	SS	24			0 /		\rightarrow			
3 Image: Superior State of the state	-2	Auge														
3 Image: Superior State of the state		Ster									\wedge					
4 Suff -5 5 -6 -228 -7 -3 -8 -0 -9 COUNDWATER ELEVATIONS COUNDWATER ELEVATIONS -0 -9 WATER LEVEL UPON COMPLETON		Solid				4	ss	34			0			>>		
4 SUT 6 58 31 0 0 0 0 -5 6 88 12 44 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>\sum_{i}</td><td></td><td></td><td></td><td></td><td>\sim</td><td></td></t<>										\sum_{i}					\sim	
4 Suff BUT 0 SNR 12 5 HDDP FOR EDENAND DAY ON TO COMPLETION SUFFACE. A A A 6 HDDP FOR EDENAND COLDPATION TO COMPLETION	3									\sim						
Suff BOD OF BOEHOLE AT 44200 COMPLET TOM COMPLET TOM BOEFOLE AT 44200 COMPLET AT 44200 COMPLET AT 44200 COMPLET AT 44200 COMPLET AT 44200 COMPLET AT 44200 COMPLET AT 44200 COMPLET AT 44200 COMPLET AT 44200 COMPLET AT 44200 COMPLET AT 44200 COMPLET AT 44200 COMPLET AT 44200 COMPLET AT 4400 COMPLET AT 44000 COMPLET AT 44000 COMPLET AT 44000 COMPLET A						5	SS	31			0			>>		
Suff Explore Pole AT 4.2m. 1 Explore Pole AT 4.2m. 242.24 44 45 1 2 3 2 3 3 3 4 4 4 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																
Suff END OF BOREHOLE AT 4.42m BOREHOLE OPEN AND DRY UPON DROMEITE NO. FILLED WITH BENTONITE HOLE PULGA AND CUTTINGS, THEN ASPHALT COLIPATCH TO SURFACE.	-4									$\langle \rangle$						
END OF BOREHOLE AT 4 32m. Set Hold Defined: Control of the set of	-		Stiff			6	SS	12			°					
-5 -5 -6 -6 -7 -8 -8 -8 -8 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9		\vdash	END OF BOREHOLE AT 4.42m.													
-5 BENTONITE HOLEPLUG AND CUTTINGS. THEN ASPHALT COLDPATCH TO SURFACE.			COMPLETION.								1					
GROUNDWATER ELEVATIONS VATER LEVEL UPON COMPLETION WATER LEVEL IN WELL/PIEZOMETER LOGGED : AF	5		BENTONITE HOLEPLUG AND CUTTINGS, THEN ASPHALT COLDPATCH TO							\nearrow						
7 Image: Second Se			SURFACE.													
7 Image: Second Se																
7 Image: Second Se						$\mathbf{\lambda}$										
-8 -8 -9 GROUNDWATER ELEVATIONS	-6			\times												
-8 -8 -9 GROUNDWATER ELEVATIONS							1									
-8 -8 -9 GROUNDWATER ELEVATIONS						$\left(< \right)$										
-8 -8 -9 GROUNDWATER ELEVATIONS							\backslash		\wedge							
9 GROUNDWATER ELEVATIONS ✓ WATER LEVEL UPON COMPLETION ✓ WATER LEVEL IN WELL/PIEZOMETER LOGGED : AF	7							/								
GROUNDWATER ELEVATIONS ✓ WATER LEVEL UPON COMPLETION ✓ WATER LEVEL IN WELL/PIEZOMETER LOGGED : AF																
9 GROUNDWATER ELEVATIONS ✓ WATER LEVEL UPON COMPLETION ✓ WATER LEVEL IN WELL/PIEZOMETER LOGGED : AF																
GROUNDWATER ELEVATIONS ✓ WATER LEVEL UPON COMPLETION ✓ WATER LEVEL IN WELL/PIEZOMETER LOGGED : AF	0															
GROUNDWATER ELEVATIONS	-0															
GROUNDWATER ELEVATIONS ✓ WATER LEVEL UPON COMPLETION ▼ WATER LEVEL IN WELL/PIEZOMETER LOGGED : AF																
GROUNDWATER ELEVATIONS																
GROUNDWATER ELEVATIONS	9		· ·													
✓ WATER LEVEL UPON COMPLETION ✓ WATER LEVEL IN WELL/PIEZOMETER LOGGED : AF																
WATER LEVEL UPON COMPLETION WATER LEVEL IN WELL/PIEZOMETER LOGGED : AF																
✓ WATER LEVEL UPON COMPLETION ✓ WATER LEVEL IN WELL/PIEZOMETER LOGGED : AF																
	_	_					_	-			_	_		_	_	
CHECKED : CZ THUR			eq water level upon CO	MPL	ETION		7	۷ ک	VATER LEVEL IN WELL/PIEZO	OMETE	R					
												CHECK	ED : (CZ		THURBER

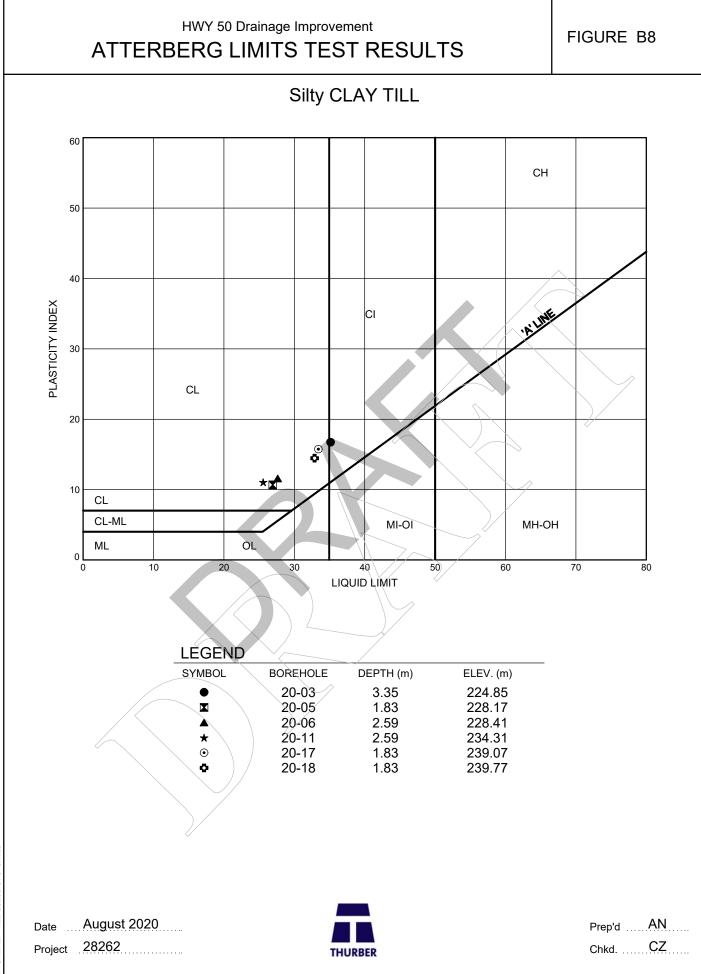


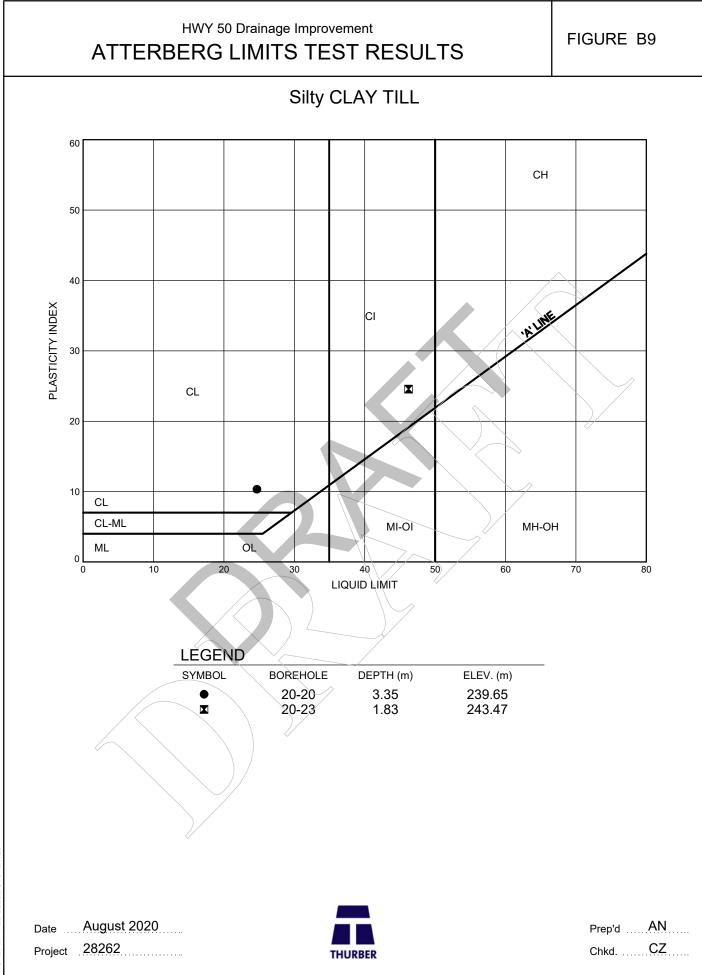

Appendix B


Laboratory Test Results



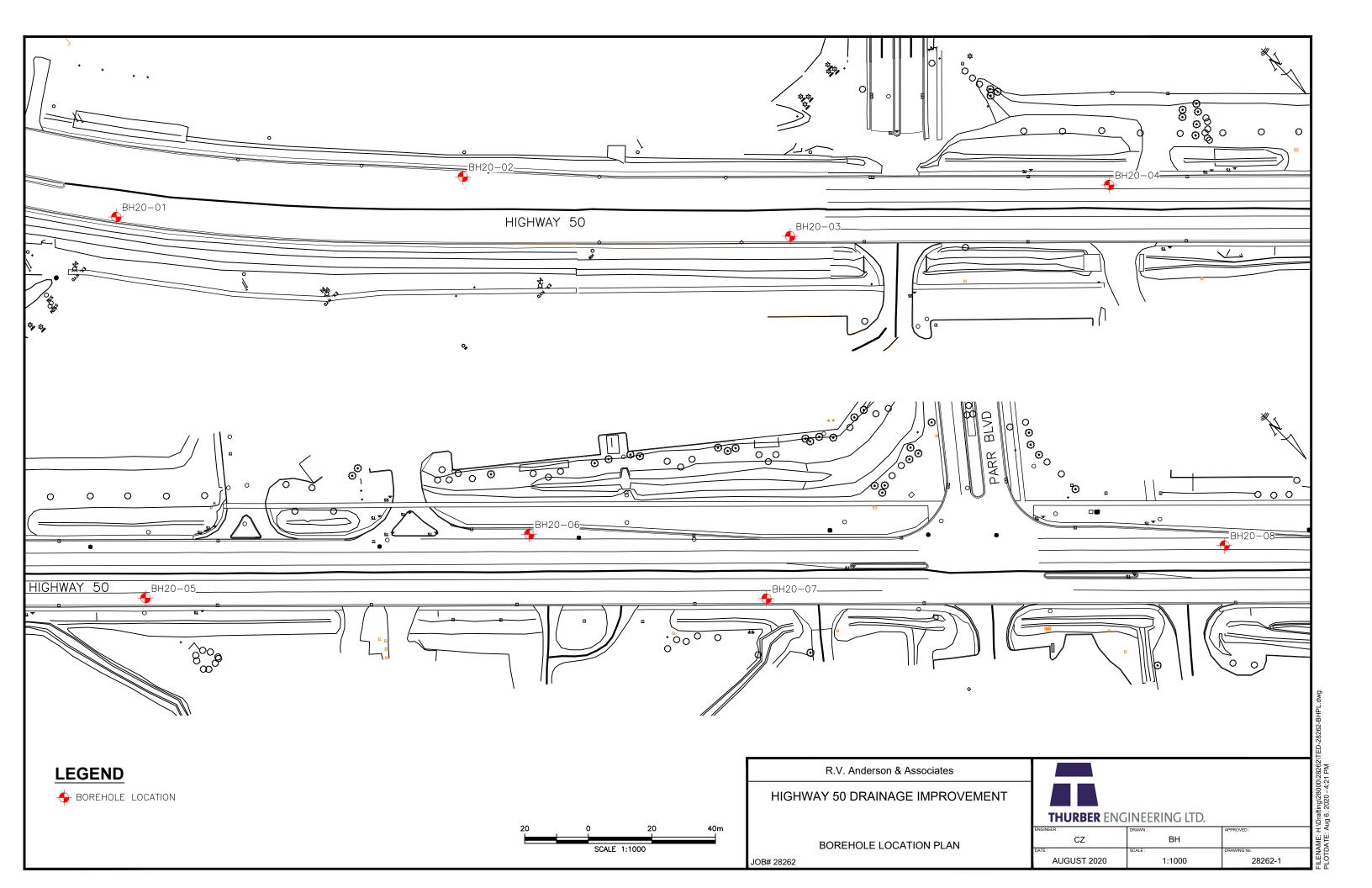


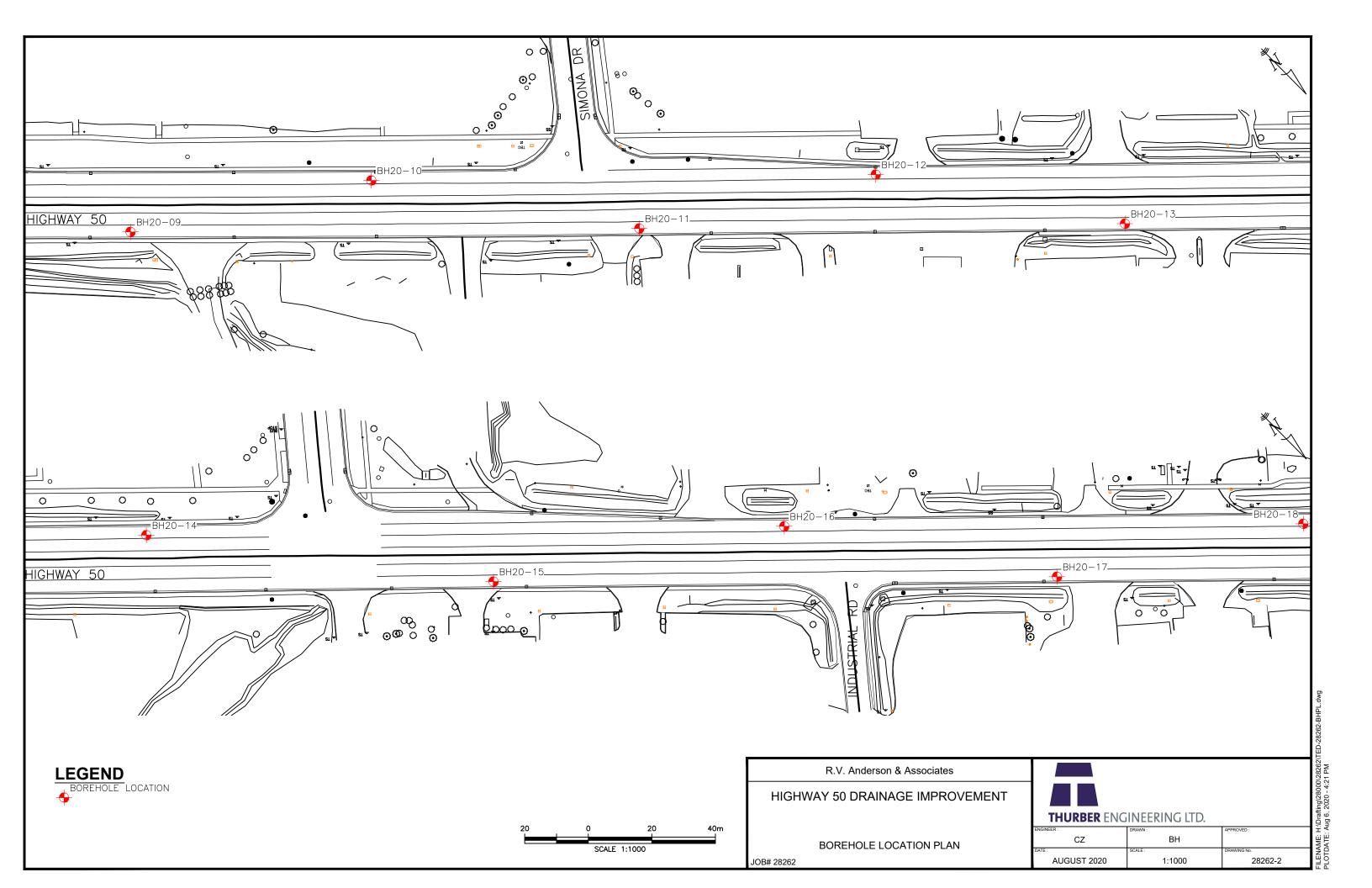


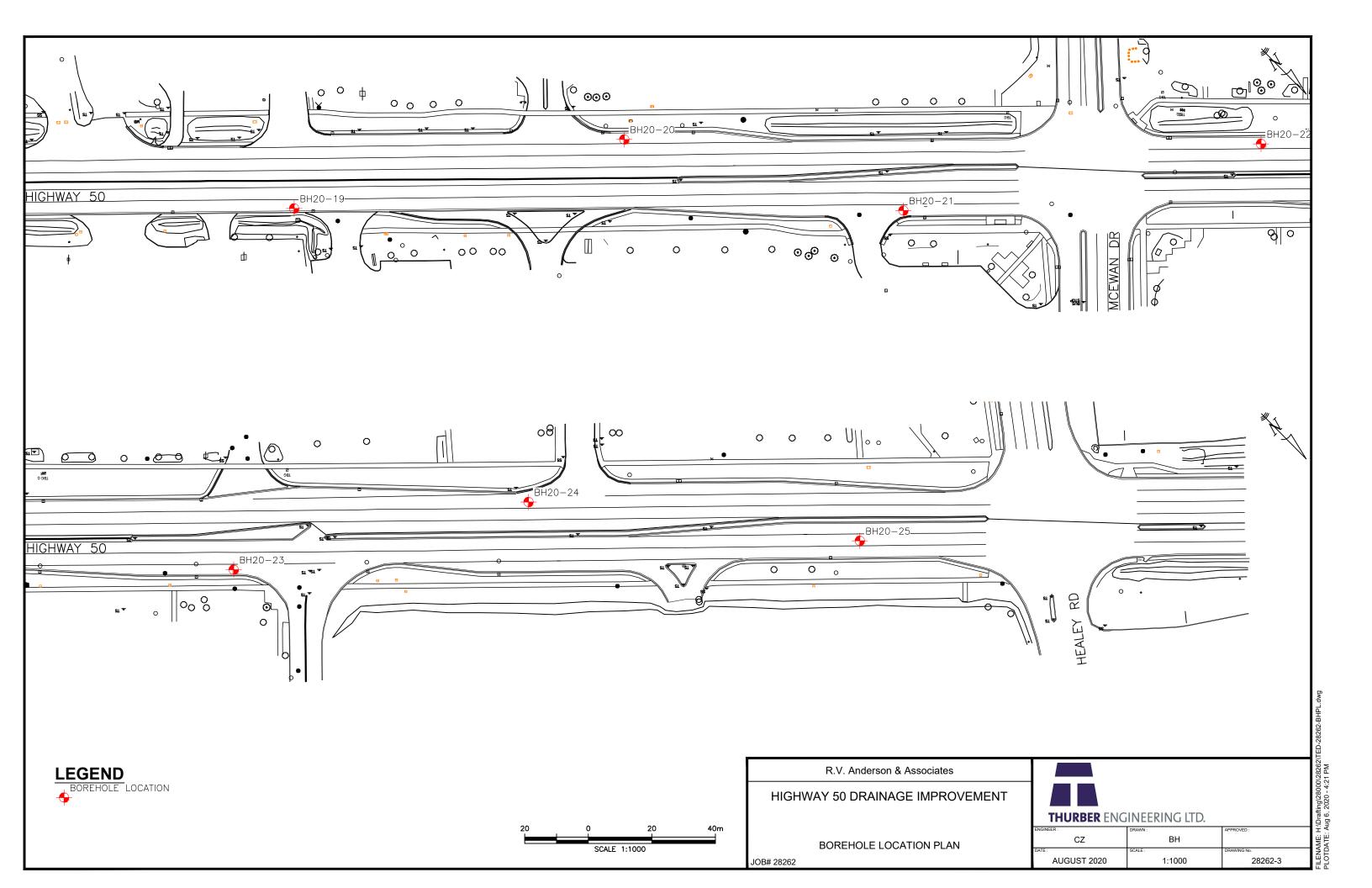


GRAIN SIZE DISTRIBUTION - THURBER TEL-28262.GPJ 8/7/20

THURBALT TEL-28262.GPJ 8/7/20




THURBALT TEL-28262.GPJ 8/7/20



Appendix C

Borehole Location Plan

Appendix D

Laboratory Certificate of Analysis

CA14951-MAY20 R1

28262

Prepared for

Thurber Engineering Ltd.

First Page

CLIENT DETAIL	LS	LABORATORY DETAILS	3
Client	Thurber Engineering Ltd.	Project Specialist	Jill Campbell, B.Sc.,GISAS
		Laboratory	SGS Canada Inc.
Address	103, 2010 Winston Park Drive	Address	185 Concession St., Lakefield ON, K0L 2H0
	Oakville, ON		
	L6H 5R7. Canada		
Contact	Cory Zanatta	Telephone	2165
Telephone	905-829-8666	Facsimile	705-652-6365
Facsimile		Email	jill.campbell@sgs.com
Email	czanatta@thurber.ca	SGS Reference	CA14951-MAY20
Project	28262	Received	05/27/2020
Order Number		Approved	06/03/2020
Samples	Soil (10)	Report Number	CA14951-MAY20 R1
		Date Reported	06/03/2020
COMMENTS			
•	Sample upon Receipt: 2 degrees C		
Cooling Agent Pr	resent:Yes		
Custody Seal Pr	resent:Yes		
Chain of Custody	y Number:013656		
Corrosivity Index	is based on the American Water Works Corrosivity S	scale according to AWWA C-105. An index g	reater than 10 indicates the soil matrix may be

corrosive to cast iron alloys.

SIGNATORIES

Jill Campbell, B.Sc.,GISAS

Jill Cumpbell

TABLE OF CONTENTS

First Page	
Index	3
Results	
QC Summary	
Legend	
Annexes	11

CA14951-MAY20 R1

Client: Thurber Engineering Ltd.

Project: 28262

Project Manager: Cory Zanatta

Samplers: N/A

PACKAGE: - Corrosivity Index (SOIL)			Sample Number	5	6	7	8	9	10	11	12
			Sample Name	20-08 SS3	20-25 SS3	20-22 SS3	20-11 SS3	20-20 SS3	20-09 SS4	20-17 SS2	20-13 SS3
			Sample Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
			Sample Date	26/05/2020	26/05/2020	26/05/2020	26/05/2020	26/05/2020	26/05/2020	26/05/2020	26/05/2020
Parameter	Units	RL		Result	Result	Result	Result	Result	Result	Result	Result
Corrosivity Index											
Corrosivity Index	none	1		11	11	11	11	14	11	11	14
Soil Redox Potential	mV	-		276	284	226	220	237	275	186	231
Sulphide	%	0.04		< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	0.10
рН	pH Units	0.05		8.08	8.20	8.42	8.21	8.91	8.32	8.46	8.45
Resistivity (calculated)	ohms.cm	-9999		740	389	526	625	439	743	388	596
PACKAGE: - Corrosivity Index (SOIL)			Sample Number Sample Name	13 20-07 SS3	14 20-01 SS2	~					
			Sample Matrix	Soil	Soil						
			Sample Date	26/05/2020	26/05/2020						
Parameter	Units	RL		Result	Result						
Corrosivity Index											
Corrosivity Index	none	1		11	11						
Soil Redox Potential	mV	-		244	225						
Sulphide	%	0.04		< 0.04	< 0.04						
рН	pH Units	0.05		8.17	8.10						
Resistivity (calculated)	ohms.cm	-9999		769	474						

CA14951-MAY20 R1

Client: Thurber Engineering Ltd.

Project: 28262

Project Manager: Cory Zanatta

Samplers: N/A

			Sample Number	5	6	7	8	9	10	11	12
PACKAGE: - General Chemistry (SOIL)			Sample Name	20-08 SS3	20-25 SS3	20-22 SS3	20-11 SS3	20-20 SS3	20-09 SS4	20-17 SS2	20-13 SS3
			•					Soil			
			Sample Matrix Sample Date	Soil 26/05/2020	Soil 26/05/2020	Soil 26/05/2020	Soil 26/05/2020	5011 26/05/2020	Soil 26/05/2020	Soil 26/05/2020	Soil 26/05/2020
_			Sample Date								
Parameter	Units	RL		Result							
Conductivity	uS/cm	2		1350	2570	1900	1600	2280	1350	2580	1680
PACKAGE: - General Chemistry (SOIL)			Sample Number	13	14						
			Sample Name	20-07 SS3	20-01 SS2						
			Sample Matrix	Soil	Soil						
			Sample Date	26/05/2020	26/05/2020						
Parameter	Units	RL		Result	Result						
General Chemistry											
Conductivity	uS/cm	2		1300	2110						
PACKAGE: - Metals and Inorganics (SOIL))		Sample Number	5	6	7	8	9	10	11	12
			Sample Name	20-08 SS3	20-25 SS3	20-22 SS3	20-11 SS3	20-20 SS3	20-09 SS4	20-17 SS2	20-13 SS3
			Sample Matrix	Soil							
			Sample Date	26/05/2020	26/05/2020	26/05/2020	26/05/2020	26/05/2020	26/05/2020	26/05/2020	26/05/2020
Parameter	Units	RL		Result							
Netals and Inorganics			*								
Moisture Content	%	0.1		13.2	14.6	14.1	12.2	15.2	11.6	16.0	11.0
Sulphate	µg/g	0.4		24	200	68	79	71	73	230	380
· ·											
PACKAGE: - Metals and Inorganics (SOIL))		Sample Number	13	14						
			Sample Name	20-07 SS3	20-01 SS2						
			Sample Matrix	Soil	Soil						
			Sample Date	26/05/2020	26/05/2020						
Parameter	Units	RL		Result	Result						

CA14951-MAY20 R1

Client: Thurber Engineering Ltd.

Project: 28262

Project Manager: Cory Zanatta

Samplers: N/A

PACKAGE: - Metals and Inorganics (SOIL	.)		Sample Number	13	14						
			Sample Name	20-07 SS3	20-01 SS2						
			Sample Matrix	Soil	Soil						
			Sample Date	26/05/2020	26/05/2020						
Parameter	Units	RL		Result	Result						
Metals and Inorganics											
Moisture Content	%	0.1		14.6	10.6						
Sulphate	µg/g	0.4		77	110						
PACKAGE: - Other (ORP) (SOIL)			Sample Number	5	6	7	8	9	10	11	12
			Sample Name	20-08 SS3	20-25 SS3	20-22 SS3	20-11 SS3	20-20 SS3	20-09 SS4	20-17 SS2	20-13 SS3
			Sample Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
			Sample Date	26/05/2020	26/05/2020	26/05/2020	26/05/2020	26/05/2020	26/05/2020	26/05/2020	26/05/2020
Parameter	Units	RL		Result							
Other (ORP)											
Chloride	µg/g	0.4		680	1200	1100	1300	500	650	880	530
PACKAGE: - Other (ORP) (SOIL)			Sample Number	13	14						
			Sample Name	20-07 SS3	20-01 SS2						
			Sample Matrix	Soil	Soil						
			Sample Date	26/05/2020	26/05/2020						
Parameter	Units	RL		Result	Result						
Other (ORP)											
Chloride	µg/g	0.4		1800	1600						

QC SUMMARY

Anions by IC

Method: EPA300/MA300-Ions1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dupl	icate	LC	S/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC	Spike	Recover (%	•	Spike Recovery		ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Chloride	DIO0528-MAY20	hð/ð	0.4	<0.4	0	20	97	80	120	103	75	125	
Sulphate	DIO0528-MAY20	hð/ð	0.4	<0.4	3	20	95	80	120	98	75	125	
Carbon/Sulphur													
Method: ASTM E1915-07A	Internal ref.: ME-CA-[ENV]ARD-LAK	-AN-020											
	001.01											-	

Carbon/Sulphur

Method: ASTM E1915-07A | Internal ref.: ME-CA-[ENV]ARD-LAK-AN-020

Parameter	QC batch	Units	RL	Method	Du	plicate	LC	S/Spike Blank		Matrix Spike / Ref.				
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery		ery Limits (%)		
						(%)	Recovery (%)	Low	High	(%)	Low	High		
Sulphide	ECS0035-MAY20	%	0.04	< 0.04	ND	20	103	80	120					

QC SUMMARY

Conductivity

Method: SM 2510 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recover (%	•	Spike Recovery	Recover (%	•
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0007-JUN20	uS/cm	2	< 0.002	0	20	99	90	110	NA		
Conductivity	EWL0009-JUN20	uS/cm	2	< 0.002	0	20	99	90	110	NA		
pH												
Method: SM 4500 Internal ref.: ME-CA-[E	NVIEWL-LAK-AN-001											

pН

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recover (%	-	Spike Recovery	Recover (9	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	EWL0007-JUN20	pH Units	0.05	NA	0		101			NA		
pH	EWL0009-JUN20	pH Units	0.05	NA	0		101			NA		

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. Matrix Spike Qualifier: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

- RL Reporting Limit.
 - ↑ Reporting limit raised.
 - ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

elinquishe	Sampled By (NAME):	ampled D	Dbservations	3 -	1 20	10	300	 2 E	1 0	5 20	4 20	320	2 00	20	J		Table 2 Table 3	Table 1	Requiatio	Email:	Phone:Fax:	L	Address:	Company	Received Time:	Received By:	
Relinquished by (NAME):	(NAME):		Dbservations/Comments/Special Instructions		1 0-0	1	512	111	204	1-20	-11	-22	2-22	80-		RECORD OF SITE		_	Regulation 153/04:	CZQNA	405-82	hive,	20/0	y Thu	REPORT	Received By: Ahnce Received Date: 05	
····			oecial Instruct		S	SS	25	200	554	553	553	533	SS	500	SAMPLE IDENTIFICATION	OF SITE CO	1.1.1.1.1.1.2	Res/Park		tta	9-8	Bahri	Luna	-ber	INFORMATION	- ty po	
			ions	1 10 10 10 10 10 10 10 10 10 10 10 10 10	5	2	1	JY					~		TION	CONDITION (RSC)	Coarse	Soil Texture:	RE	withur be	9398	10	Ster Par	Envine	ä	Manda 1	
						K		-					(May 26/20	DATE SAMPLED) YES [D PWQO CCME MISA	Regulations:	REGULATIONS	verhail: CT	Phone:	Address:	Company: Contact:	same a		alani	•
														6	TIME SAMPLED	ON D	Other:	Reg 347/558 (3 Dav min TAT)		Zara Ha				(same as Report Information)	Custody Seal Intact: INVOICE INFORMA	Received	
Signature:	Signature:				-		1	-	1	-	1	1	1	1	BOTTLES		Mu			@thurb				nation)	Custody Seal Intact: NIVOICE INFORMATION	Received By (signature):	
Signature:				14											MATRIX		Municípality:	Sewer By-Law:		ser. ca					les No	h	
															Field Filtered (Y Metals & Inorg Incl GrVI, CN, Hg pH, (B(HW (CI, Na-water) Full Metals Sui	ani	CS SAR-soil)	MI Q.		Specify Due Date		P Regu	Project #:	Quotation #:		Collec Acation - Lab use	-
															ICP metals plus B(HWS-soli ICP Metals only Sb,As,Ba,Be,B,Cd,Cr,Co,Cu Se,Ag,TI,U,V,Zn	only)	Hg, CrVI p,Ni,	-		ate:	dditional CI FIRM RUSH	Regular TAT (5-7days)	A		Temperature Upon Receipt (°C)	ation Sec	
															PAHs only SVOCs all incl PAHs, ABNs, CPs			SVUC	100000		rarges May	7days)	284	5	pon Receipt	tion - Lab	1000001
														-	PCBs Total	Aro	clor	PCB PI	ANA		Apply): TY WITH S		62		pt (°C) 20.2	use only	- 019-0/2-U3
	_														F1-F4 only no BTEX VOCS all incl BTEX			PHC V	MALYSIS REQUESTED	NOTE: [GS REPRI	and a	TIIDN		p o l	-	01
Date:	Date:														BTEX only Pesticides Organochlorine or specify of			VOC Pest	REQUE	PRINKING (F	Day 🗌 ESENTATI				0	tos	
-	-	-			V	<	5	<	5	<	<		< "		Corrosivity		esting	st	STED	OTABLE) W	Sam 2 Days 🗌 VE PRIOR	000	3	P			
																		Other		ATER SAME	Samples received after 6pn 1 Day 2 Days 3 Days 4 Days EPRESENTATIVE PRIOR TO SUBMISSION	TAT's are quoted in	Site Location/ID:	P.O. #:			
(mm/dd/yy)	1	-													Sewer Use:			(please specify)		LES FOR H	d after 6pm c 4 Days ISSION	in business	ND:				
lyyy)														S V	ipecify pkg: Vater Character	iza	tion Pkg	(Y)	Ci a me Ci	IUMAN CON	or on weeker	days (exclud			LAB LIMS #:		
Pink														Lignit	<u> </u>	OM&I	Specify TCLP tests	TCLP	001001	SUMPTION	lds: TAT beg	le statutory h			F		T
Pink Copy - Client										the set			and the second se		COMMENTS:					NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED	Samples received after 6pm or on weekends: TAT begins next business day 3 3 Days 4 Days 10R TO SUBMISSION	holidays & weekends)			LABLIMS # CALLYSI - Ma		Page of