

REPORT

Hydrogeological Desktop Report

Airport Road from Braydon Boulevard/Stonecrest Drive to Countryside Drive City of Brampton

Submitted to:

HDR Inc.

Attention: Ms. Veronica Restrepo, P.Eng. 255 Adelaide St. W. M5H 1X9 Toronto, ON

Submitted by:

Golder Associates Ltd.

121 Commerce Park Drive, Unit L, Barrie, Ontario, L4N 8X1, Canada +1 705 722 4492

1773654

November 12, 2020

Distribution List

1 eCopy - HDR

1 eCopy - Golder Associates Ltd.

Table of Contents

9.0	REFE	RENCES	6
8.0	CLOS	URE	4
	7.3	Dewatering Evaluation	4
	7.2	Infiltration Assessment	3
	7.1	Drilling Results	3
7.0	DISCU	JSSION	3
6.0	WELL	RECORDS	2
5.0	PHYS	IOGRAPHY, GEOLOGY AND HYDROGEOLOGY	2
4.0	торо	GRAPHY AND DRAINAGE	1
3.0	GEOT	ECHNICAL INVESTIGATION	1
2.0	PROJ	ECT UNDERSTANDING	1
1.0	INTRO	DDUCTION	1

FIGURES

Figure 1 – Key Plan

Figure 2 – Cross-Section A-A'

Figure 3 – Surficial Geology

APPENDICES

APPENDIX A Report Limitations

APPENDIX B Borehole Logs

APPENDIX C MECP Water Well Database Information

1773654

1.0 INTRODUCTION

The Region of Peel (Region) intends to widen Airport Road (Regional Road 7) to six lanes and rehabilitate the existing lanes from 300 m south of Braydon Boulevard/Stonecrest Drive to 300 m north of Countryside Drive in the City of Brampton, a distance of approximately 2.2 km (the "Site", as shown in Figure 1). The Region has retained HDR Inc. (HDR) as the Design Consultant and HDR in turn has retained Golder Associates Ltd. (Golder) to carry out a desktop hydrogeological assessment in support of the preliminary design as part of a Schedule 'C' Class Environmental Assessment.

The terms of reference and scope of work for the investigation and design services were outlined in the Request for Proposal (RFP) 2017-079P, issued by the Region dated January 17, 2017, Addenda 1 to 2, and Golder's proposal to HDR dated February 8, 2017.

This report should be read in conjunction with the "Important Information and Limitations of this Report" attached at the end of the report in Appendix A The reader's attention is specifically drawn to this information, as it is essential for the proper use and interpretation of this report.

2.0 PROJECT UNDERSTANDING

The existing road consists of four through lanes with additional left and right turn lanes near intersections. The proposed improvements include widening to accommodate six through lanes and a centre median of varying widths. The purpose of the hydrogeological investigation was to conduct a preliminary desktop investigation into the existing groundwater conditions, identify potential water wells and septic beds in the vicinity of the Site, evaluate potential dewatering requirements, assess the potential for off-Site impacts associated with the proposed construction activities, and comment on the potential infiltration capacity of the native soil to support a Low Impact Development (LID) infiltration strategy.

3.0 GEOTECHNICAL INVESTIGATION

Golder conducted a geotechnical investigation at the Site during October and November 2019. The work included advancing a total of 42 boreholes to a depth of 1.5 m, advancing two deeper boreholes to a maximum depth of 8 m, collecting samples of the granular base, subbase and subgrade soils to assess the material characteristics including grain size distribution, Atterberg Limits and water content, and provide pavement analysis and design recommendation. The drilling locations are illustrated in Figure 2. The deep borehole logs are provided in Appendix B. Borehole BH18F-2 was completed with a standpipe piezometer to permit the collection of water level measurements.

4.0 TOPOGRAPHY AND DRAINAGE

The ground elevation along Airport Road slopes downward gradually to the southeast, mimicking the topography of the surrounding area. The ground surface declines from an elevation of about 225 masl at the intersection of Countryside Drive and Airport Road, to approximately 212 masl at the intersection of Stonecrest Drive and Airport Road, resulting in an average slope of 0.8% over a distance of 1.6 km. The entire stretch of Airport Road encompassed by the Site limits appears to be drained by the municipal storm sewer system which captures rainfall and surface runoff. Airport Road is bisected by two water features, both tributaries of the Humber River, which pass under Airport Road via culverts.

5.0 PHYSIOGRAPHY, GEOLOGY AND HYDROGEOLOGY

Chapman and Putnam (1984) provide information on the regional physiography; the information provided therein is summarized as follows. The Site is located near the boundary of the South Slope and Peel Plain physiographic regions. The South Slope region is the south slope of the Oak Ridges Moraine. In the area of the Site the slope is smoothed and scored at intervals by valley tributaries of the Humber River. There are no large, undrained depressions. Surface soil in the South Slope region generally consists of till derived from the underlying (shale) bedrock, occasionally overlain by clay deposits. In various areas the stream valleys are bordered by areas of sandy alluvium. The overburden is reportedly not deep, the till is dense, and there are few beds of sand to serve as aquifers.

Figure 2 presents a stratigraphic section along Airport Road, based on local borehole data available from the Ministry of the Environment, Conservation and Parks (MECP) Water Well Database. The borehole logs indicate that the majority of the surficial deposits (i.e. less than 10 m below grade) consist of clay or clay till. Borehole records indicate that surficial peat/loam deposits were historically encountered at several locations in the vicinity of the Site. It is expected that any surficial organic deposits were thereafter removed during the construction of Airport Road. A confined, sand and gravel aquifer is present in the area of Site, at a depth of between 10 to 15 mbgs. Based on water level data presented in the various well records, the hydrostatic head in the confined aquifer (at the time of measurement) ranged from about 215 masl at the north end of the Site to 208 masl at the south end of the Site, and about 3 m below grade at the south end of the Site. The MECP records also indicate the depth to the shale bedrock in the area of the Site is approximately 20 mbgs.

Geological mapping by the Ontario Geological Survey (OGS; 2010) is provided in Figure 3. The surficial geology in the area is broadly consistent with the well drilling results, with the majority of the Site reportedly underlain by either glaciolacustrine silt and clay, or till derived from fine-grained glaciolacustrine deposits. The OGS mapping indicates an area of alluvial deposits of limited lateral extent is present at the north end of the Site, however the few drilling records within the indicated area did not report the presence of such material.

A standpipe piezometer was installed at borehole BH18-F2, in close proximity the stream feature bisecting the Site, to evaluate the groundwater level in the vicinity. The groundwater level at the piezometer was measured to be 3.2 m below the existing ground surface on January 7th, 2020, about 6 weeks after completion of drilling. These observations reflect the groundwater conditions encountered in the monitoring well during the time of the field investigation (January 2020). It is expected that the shallow groundwater surface (i.e. the water table) in the area of the Site reflects the surface topography, with groundwater flow from north to south. Shallow groundwater likely reports, at least locally, to the various surface water features.

6.0 WELL RECORDS

Appendix C presents the results of a MECP Water Well Information System database query. The database indicates a total of 42 water well records within a 500 m radius of the Site. Of the listed records:

- 13 were indicated as being for domestic water supply use;
- 2 were indicated as being for either stock or commercial water supply;
- 15 were indicated as either abandoned or not use;
- 6 were observation wells or test holes; and
- 1 was a municipal supply well.

Five of the records had no listed use and no detailed information. The depth of the various wells ranges from approximately 10 m to 30 m. Nearly all the wells listed for private water supply were drilled between the 1950s and 1970s. Based on the extent of development in the area, and the presence of infrastructure along the roadways (e.g. sewers, fire hydrants), it is assumed that all private property in the vicinity of the Site is connected to the municipal water supply system, and that the private supply wells listed in the database are no longer in use. Based on a review of the MECP Source Protection Information Atlas (MECP, 2020), the municipal well (drilled in 1949) is no longer active, and the MECP Permit to Take Water Mapping Database indicates no active water taking permits within approximately 5 km of the Site.

7.0 DISCUSSION

The project will consist of widening Airport Road from four to six lanes about the existing centreline, by shifting the curb locations by one lane on both sides. This will require partial depth replacement of the pavement structure, the relocation of catchbasins to the new curb locations, the installation of multi-use paths on both the east and west sides of Airport Road, and the relocation of the hydro poles on the west side of Airport Road. The improvements to Airport Road are not anticipated to require extensions of replacement of the existing concrete box culverts at the two tributary locations, nor is it anticipated that new drainage infrastructure (new storm sewer systems) will be required.

It is understood that subsurface infiltration trenches are proposed as part of the stormwater management system for the redevelopment (HDR, 2019). The trenches would be connected to, and receive water from, the storm sewer / catchbasin system. These trenches would underlie future boulevards on either side of the road and generally be installed at a depth of 1.5 to 2.0 m from finished grade with a trench width and depth of 1.0 m x 0.4 m. Specifics regarding pre-treatment, backfilled material, filter media and overflow conveyance has not been specified but is assumed to follow design guidance as provided in Low Impact Development Stormwater Management Planning and Design Guide (CVC, 2010).

7.1 Drilling Results

The borehole drilling results were consistent with publicly available geological information, and indicated the surficial deposits consisted of silty clay fill, overlying hard to very stiff silty clay till and silty clay. The available groundwater data suggests that the depth to the water table in the vicinity of the Site is on the order 3 m. Based on professional experience in Southern Ontario, it is expected that the water table elevation will fluctuate on the order of 1 to 2 m on a seasonal basis, and as such the shallow groundwater level may conservatively be expected to be shallower (e.g. 2 m below ground).

7.2 Infiltration Assessment

The use of LID infiltration features for stormwater storage and infiltration is being considered as part of the re-development, although final design details have not been confirmed. At this early stage Golder has been asked to comment on the general feasibility of employing infiltration trenches at the Site. To this end we note the following:

It is anticipated that any infiltration features would be installed in areas above the water table but below the frost line, either in silty clay fill, or native silty clay deposits. As noted in Section 5.0, the depth to groundwater at the Site is anticipated to range from approximately 3 mbgs in the south, to 10 mbgs in the north, although the depth to water may be shallower due to seasonal fluctuations.

- The effectiveness of the infiltration trench will be in part dependent on the capacity of the surrounding soils to infiltrate water. The Low Impact Development Stormwater Management Planning and Design Guide (CVC, 2010) provides an approximate relationship between field saturated hydraulic conductivity (K_{fs}) and infiltration rate. No hydraulic conductivity testing was conducted as part of the current investigation; however, given the clay-based nature of the soils we would expect a K_{fs} at the low end of the range. The correlation in CVC (2010) (Appendix C, Table C1) has a lower K_{fs} limit of 1 x 10⁻⁸ m/s, for which the corresponding infiltration rate is indicated to be 12 millimetres per hour.
- Should LIDs be pursued at the Site, we concur with CVC (2010) which states that to "verify native soil infiltration rates it is strongly recommended that infiltration tests be carried out with a permeameter".

7.3 Dewatering Evaluation

The native clay-based surficial deposits at the Site are expected to have saturated hydraulic conductivity values on the order of 1 x 10⁻⁸ to 1 x 10⁻¹⁰ m/s (Freeze and Cherry, 1979). Shallow excavations into such material, assuming the excavations are below the water table, would be expected to have limited groundwater influx, and could typically be managed using in-pit controls (i.e. pumps and sumps) rather than an active dewatering system. Deeper excavations may also be manageable by in-excavation controls depending on their size and depth; however the presence of the deeper confined aquifer may pose a risk to excavation stability and would need to be evaluated for the potential need for depressurization. In the event alterations are required to the culvert structures, any associated dewatering activities (e.g. foundation installation, excavation adjacent to the stream) must consider the potential for impacts to the nearby surface water features. Based on the observed presence of municipal water supply servicing and (presumed) sanitary sewer servicing in the vicinity of the Site, it is considered unlikely that any extant private wells or septic bed systems are active in this area and are thus not a concern for project impact assessment.

In the event that dewatering or depressurization is required at the Site, assuming removal of greater than 50,000 L of groundwater per day (or combined groundwater and surface water), either an Environmental Activity and Sector Registry (EASR; for volumes less than 400,000 L/day) or Permit to Take Water (PTTW; for volumes more than 400,000 L/day) would be required from the MECP. Obtaining MECP approval for a PTTW can take up to three months; therefore, an allowance for this time should be included for in the overall planning process.

The above section provides a preliminary and general assessment of potential dewatering concerns based on the current results of the desktop hydrogeology assessment. The dewatering requirements should be re-assessed during detailed design, once design details and construction plans are available.

8.0 CLOSURE

We trust this report meets your current requirements; should you have any further questions please do not hesitate to contact the undersigned.

Signature Page

Golder Associates Ltd.

David Dillon, M.Sc., P.Geo. *Hydrogeologist*

Devin Hannan, P.Eng. *Associate, Environmental Engineer*

DD/DH/lb

Golder and the G logo are trademarks of Golder Associates Corporation

9.0 **REFERENCES**

Chapman, L.J. and D.F. Putnam. 1984. The Physiography of Southern Ontario, Third Edition. Ministry of Natural Resources.

Credit Valley Conservation Authority. 2010. Low Impact Development Stormwater Planning and Design Guide, Version 1.0.

Freeze, R.A. and J.A. Cherry. 1979. Groundwater. Prentice-Hall Publishing.

HDR Inc. 2020. Conceptual Infiltration Trench Design. Dated February 22, 2019. Provided in an email from Anthony Reitmeier, dated November 12, 2020.

Ministry of the Environment, Conservation and Parks. 2020. Source Water Protection Information (https://www.gisapplication.lrc.gov.on.ca/SourceWaterProtection/Index.html)

Ontario Geological Survey 2010. Surficial geology of Southern Ontario; Ontario Geological Survey, Miscellaneous Release--Data 128-REV

https://golderassociates.sharepoint.com/sites/13020g/2000 hydrog assessment desktop review/report/1773654 2020'11'12 desktop hydrogeological assessment report_city of brampton final_r2.docx

Figures

APPENDIX A

Report Limitations

IMPORTANT INFORMATION AND LIMITATIONS OF THIS REPORT

Standard of Care: Golder Associates Ltd. (Golder) has prepared this report in a manner consistent with that level of care and skill ordinarily exercised by members of the engineering and science professions currently practising under similar conditions in the jurisdiction in which the services are provided, subject to the time limits and physical constraints applicable to this report. No other warranty, expressed or implied is made.

Basis and Use of the Report: This report has been prepared for the specific site, design objective, development and purpose described to Golder by the Client. The factual data, interpretations and recommendations pertain to a specific project as described in this report and are not applicable to any other project or site location. Any change of site conditions, purpose, development plans or if the project is not initiated within eighteen months of the date of the report may alter the validity of the report. Golder cannot be responsible for use of this report, or portions thereof, unless Golder is requested to review and, if necessary, revise the report.

The information, recommendations and opinions expressed in this report are for the sole benefit of the Client. No other party may use or rely on this report or any portion thereof without Golder's express written consent. If the report was prepared to be included for a specific permit application process, then upon the reasonable request of the client, Golder may authorize in writing the use of this report by the regulatory agency as an Approved User for the specific and identified purpose of the applicable permit review process. Any other use of this report by others is prohibited and is without responsibility to Golder. The report, all plans, data, drawings and other documents as well as all electronic media prepared by Golder are considered its professional work product and shall remain the copyright property of Golder, who authorizes only the Client and Approved Users to make copies of the report, but only in such quantities as are reasonably necessary for the use of the report or any portion thereof to any other party without the express written permission of Golder. The Client acknowledges that electronic media is susceptible to unauthorized modification, deterioration and incompatibility and therefore the Client can not rely upon the electronic media versions of Golder's report or other work products.

The report is of a summary nature and is not intended to stand alone without reference to the instructions given to Golder by the Client, communications between Golder and the Client, and to any other reports prepared by Golder for the Client relative to the specific site described in the report. In order to properly understand the suggestions, recommendations and opinions expressed in this report, reference must be made to the whole of the report. Golder can not be responsible for use of portions of the report without reference to the entire report.

Unless otherwise stated, the suggestions, recommendations and opinions given in this report are intended only for the guidance of the Client in the design of the specific project. The extent and detail of investigations, including the number of test holes, necessary to determine all of the relevant conditions which may affect construction costs would normally be greater than has been carried out for design purposes. Contractors bidding on, or undertaking the work, should rely on their own investigations, as well as their own interpretations of the factual data presented in the report, as to how subsurface conditions may affect their work, including but not limited to proposed construction techniques, schedule, safety and equipment capabilities.

Soil, Rock and Ground Water Conditions: Classification and identification of soils, rocks, and geologic units have been based on commonly accepted methods employed in the practice of geotechnical engineering and related disciplines. Classification and identification of the type and condition of these materials or units involves judgment, and boundaries between different soil, rock or geologic types or units may be transitional rather than abrupt. Accordingly, Golder does not warrant or guarantee the exactness of the descriptions.

Special risks occur whenever engineering or related disciplines are applied to identify subsurface conditions and even a comprehensive investigation, sampling and testing program may fail to detect all or certain subsurface conditions. The environmental, geologic, geotechnical, geochemical and hydrogeologic conditions that Golder interprets to exist between and beyond sampling points may differ from those that actually exist. In addition to soil variability, fill of variable physical and chemical composition can be present over portions of the site or on adjacent properties. The professional services retained for this project include only the geotechnical aspects of the subsurface conditions at the site, unless otherwise specifically stated and identified in the report. The presence or implication(s) of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from off-site sources are outside the terms of reference for this project and have not been investigated or addressed.

Soil and groundwater conditions shown in the factual data and described in the report are the observed conditions at the time of their determination or measurement. Unless otherwise noted, those conditions form the basis of the recommendations in the report. Groundwater conditions may vary between and beyond reported locations and can be affected by annual, seasonal and meteorological conditions. The condition of the soil, rock and groundwater may be significantly altered by construction activities (traffic, excavation, groundwater level lowering, pile driving, blasting, etc.) on the site or on adjacent sites. Excavation may expose the soils to changes due to wetting, drying or frost. Unless otherwise indicated the soil must be protected from these changes during construction.

Sample Disposal: Golder will dispose of all uncontaminated soil and/or rock samples 90 days following issue of this report or, upon written request of the Client, will store uncontaminated samples and materials at the Client's expense. In the event that actual contaminated soils, fills or groundwater are encountered or are inferred to be present, all contaminated samples shall remain the property and responsibility of the Client for proper disposal.

Follow-Up and Construction Services: All details of the design were not known at the time of submission of Golder's report. Golder should be retained to review the final design, project plans and documents prior to construction, to confirm that they are consistent with the intent of Golder's report.

During construction, Golder should be retained to perform sufficient and timely observations of encountered conditions to confirm and document that the subsurface conditions do not materially differ from those interpreted conditions considered in the preparation of Golder's report and to confirm and document that construction activities do not adversely affect the suggestions, recommendations and opinions contained in Golder's report. Adequate field review, observation and testing during construction are necessary for Golder to be able to provide letters of assurance, in accordance with the requirements of many regulatory authorities. In cases where this recommendation is not followed, Golder's responsibility is limited to interpreting accurately the information encountered at the borehole locations, at the time of their initial determination or measurement during the preparation of the Report.

Changed Conditions and Drainage: Where conditions encountered at the site differ significantly from those anticipated in this report, either due to natural variability of subsurface conditions or construction activities, it is a condition of this report that Golder be notified of any changes and be provided with an opportunity to review or revise the recommendations within this report. Recognition of changed soil and rock conditions requires experience and it is recommended that Golder be employed to visit the site with sufficient frequency to detect if conditions have changed significantly.

Drainage of subsurface water is commonly required either for temporary or permanent installations for the project. Improper design or construction of drainage or dewatering can have serious consequences. Golder takes no responsibility for the effects of drainage unless specifically involved in the detailed design and construction monitoring of the system.

APPENDIX B

Borehole Logs

Organic or Inorganic	Soil Group	Туре	of Soil	Gradation or Plasticity	Cu	$=\frac{D_{60}}{D_{10}}$		$Cc = \frac{(D_{30})^2}{D_{10}xD_{60}}$			USCS Group Symbol	Group Name	
	<u> </u>	s of n is mm)	Gravels with ≤12%	Poorly Graded		<4		≤1 or ≥	:3		GP	GRAVEL	
(ss)	5 mm	VELS / mas raction	fines (by mass)	Well Graded		≥ 4 $1 \text{ to } 3$ G $S \text{ to } 1 \text{ to } 2$ ≥ 4 $1 \text{ to } 3$ G		GRAVEL					
, by ma	SOILS an 0.07	GRA 50% by oarse fr	Gravels with	Below A Line	n						GM	SILTY GRAVEL	
GANIC it ≤30%	AINED arger th	(> cc larc	fines (by mass)	Above A Line	n/a					≤30%	GC	CLAYEY GRAVEL	
INOR	SE-GR ss is la	of is	Sands with	Poorly Graded		<6		≤1 or ≩	≥3		SP	SAND	
rganic (COARS by ma	VDS / mass raction n 4.75	fines (by mass)	Well Graded	≥6			1 to 3	3		SW	SAND	
0)	(>50%	SAI 50% by oarse f	Sands with	Below A Line			n/a				SM	SILTY SAND	
	- X 8 c / >12% fines Line n/a										SC	CLAYEY SAND	
Organic	Soil	Turno	of Soil	Laboratory		F	ield Indic	ators	Toughness	Organic	USCS Group	Primary	
Inorganic	Group	Type of Soli		Tests	Dilatancy	Dry Strength	Shine Test	Thread Diameter	(of 3 mm thread)	Content	Symbol	Name	
				Liquid Limit	Rapid	None	None None >6 mm N/A (can't roll 3 mm <5% thread)			ML	SILT		
(ss)	75 mm	S	icity low)	<50	Slow	None to Low	Dull	3mm to 6 mm	None to low	<5%	ML	CLAYEY SILT	
by me	OILS an 0.0	SILTS tic or P	n Plast n Plast nart be		Slow to very slow	Low to medium	Dull to slight	3mm to 6 mm	Low	5% to 30%	OL	ORGANIC SILT	
GANIC t ≤30%	NED S	-Plac		Liquid Limit	Slow to very slow	Low to medium	Slight	3mm to 6 mm	Low to medium	<5%	МН	CLAYEY SILT	
INOR	E-GRAI	SN)		≥50	None	Medium to high	Dull to slight	1 mm to 3 mm	Medium to high	5% to 30%	ОН	ORGANIC SILT	
rganic	FINE by mas		hart	Liquid Limit <30	None	Low to medium	Slight to shiny	~ 3 mm	Low to medium	0% to	CL	SILTY CLAY	
0	≥50%	CLAYS	e A-Lir ticity C below)	Liquid Limit 30 to 50	None	Medium to high	Slight to shiny	1 mm to 3 mm	Medium	30%	CI	SILTY CLAY	
			Plas	Liquid Limit ≥50 None High Shiny <1 mm				High	(see Note 2)	СН	CLAY		
×S	nic .30% ss)	Peat and mix	mineral soil tures							30% to 75%		SILTY PEAT, SANDY PEAT	
HIGHL DRGAN SOIL	(Organ ntent > by mas	Predomir may con	nantly peat, Itain some							75%	PT		
40	ပိ	mineral so amorph	il, fibrous or nous peat							100%		PEAT	
-	Low	Plasticity		Medium Plasticity	≺ Hig	h Plasticity		a hyphen,	bol — A dua for example,	I symbol is two symbols separated by , GP-GM, SW-SC and CL-ML.			
					CLAY	Bud Tallit		For non-co	hesive soils,	the dual s	ymbols must b	e used when	
30 -					CLAY CH the soil has betw						12% fines (i.e lean" and "di	e. to identify rtv" sand or	
								gravel.					
idex (PI	CLAYY SILT MH ORGANIC SILT OH For cohesive soils, th							ive soils, the	dual symb	ol must be us	ed when the		
- 02 In		Inquid limit and plastic							and plasticity	/ Index val ee Plastici	ues plot in the itv Chart at left	CL-IVIL area	
Plas		SILTY O		*							,	,	
10		CL						Borderlin	e Symbol —	A borderl	ine symbol is	two symbols	
7			C OF	LAYEY SILT ML RGANIC SILT OL	A borderline symbol should be used to indicate that the set								
4	SILTY CLAY-CLAY	'EY SILT , CL-ML						has been	identified as	s having p	properties that	are on the	
0	SILT ML (See Note 1)						transition b	between simil	ar materia	ls. In addition	a borderline	
o	10	20	25.5 30 Li	40 5 quid Limit (LL)	0 60	70	80	symbol ma within a st	ay be used to ratum	indicate a	a range of simi	iar soil types	
Note 1 – Fi slight plas	ne grained ticity. Fine-	materials wi grained mat	th PI and LL terials which	that plot in this a are non-plastic (area are nameo i.e. a PL canno	I (ML) SILT work the measure	rith ed) are	within a St					

The Golder Associates Ltd. Soil Classification System is based on the Unified Soil Classification System (USCS)

named SILT. Note 2 – For soils with <5% organic content, include the descriptor "trace organics" for soils with between 5% and 30% organic content include the prefix "organic" before the Primary name.

ABBREVIATIONS AND TERMS USED ON RECORDS OF BOREHOLES AND TEST PITS

PARTICI E SIZES OF CONSTITUENTS

Soil Constituent	Particle Size Description	Millimetres	Inches (US Std. Sieve Size)					
BOULDERS	Not Applicable	>300	>12					
COBBLES	Not Applicable	75 to 300	3 to 12					
GRAVEL	Coarse Fine	19 to 75 4.75 to 19	0.75 to 3 (4) to 0.75					
SAND	Coarse Medium Fine	2.00 to 4.75 0.425 to 2.00 0.075 to 0.425	(10) to (4) (40) to (10) (200) to (40)					
SILT/CLAY	Classified by plasticity	<0.075	< (200)					

MODIFIERS FOR SECONDARY AND MINOR CONSTITUENTS

Percentage by Mass	Modifier								
>35	Use 'and' to combine major constituents (<i>i.e.</i> , SAND and GRAVEL)								
> 12 to 35	Primary soil name prefixed with "gravelly, sandy, SILTY, CLAYEY" as applicable								
> 5 to 12	some								
≤ 5	trace								

PENETRATION RESISTANCE

Standard Penetration Resistance (SPT), N:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) required to drive a 50 mm (2 in.) split-spoon sampler for a distance of 300 mm (12 in.). Values reported are as recorded in the field and are uncorrected.

Cone Penetration Test (CPT)

An electronic cone penetrometer with a 60° conical tip and a project end area of 10 cm² pushed through ground at a penetration rate of 2 cm/s. Measurements of tip resistance (q), porewater pressure (u) and sleeve frictions are recorded electronically at 25 mm penetration intervals.

Dynamic Cone Penetration Resistance (DCPT); Nd: The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) to drive uncased a 50 mm (2 in.) diameter, 60° cone attached to "A" size drill rods for a distance of 300 mm (12 in.).

- PH: Sampler advanced by hydraulic pressure
- PM: Sampler advanced by manual pressure
- WH: Sampler advanced by static weight of hammer
- WR: Sampler advanced by weight of sampler and rod

Compactness ²											
Term	SPT 'N' (blows/0.3m) ¹										
Very Loose	0 to 4										
Loose	4 to 10										
Compact	10 to 30										
Dense	30 to 50										
Very Dense	>50										

NON-COHESIVE (COHESIONLESS) SOILS

- 1. SPT 'N' in accordance with ASTM D1586, uncorrected for the effects of overburden pressure.
- Definition of compactness terms are based on SPT 'N' ranges as provided in Terzaghi, Peck and Mesri (1996). Many factors affect the recorded SPT 'N' 2. value, including hammer efficiency (which may be greater than 60% in automatic trip hammers), overburden pressure, groundwater conditions, and grainsize. As such, the recorded SPT 'N' value(s) should be considered only an approximate guide to the soil compactness. These factors need to be considered when evaluating the results, and the stated compactness terms should not be relied upon for design or construction.

Field Moisture Condition

Term	Description
Dry	Soil flows freely through fingers.
Moist	Soils are darker than in the dry condition and may feel cool.
Wet	As moist, but with free water forming on hands when handled.

SAMPLES	
AS	Auger sample
BS	Block sample
CS	Chunk sample
DD	Diamond Drilling
DO or DP	Seamless open ended, driven or pushed tube sampler – note size
DS	Denison type sample
GS	Grab Sample
MC	Modified California Samples
MS	Modified Shelby (for frozen soil)
RC	Rock core
SC	Soil core
SS	Split spoon sampler – note size
ST	Slotted tube
ТО	Thin-walled, open - note size (Shelby tube)
TP	Thin-walled, piston - note size (Shelby tube)
WS	Wash sample

SOIL TESTS

w	water content
PL, w _p	plastic limit
LL, wL	liquid limit
С	consolidation (oedometer) test
CHEM	chemical analysis (refer to text)
CID	consolidated isotropically drained triaxial test1
CIU	consolidated isotropically undrained triaxial test with porewater pressure measurement ¹
D _R	relative density (specific gravity, Gs)
DS	direct shear test
GS	specific gravity
М	sieve analysis for particle size
MH	combined sieve and hydrometer (H) analysis
MPC	Modified Proctor compaction test
SPC	Standard Proctor compaction test
OC	organic content test
SO ₄	concentration of water-soluble sulphates
UC	unconfined compression test
UU	unconsolidated undrained triaxial test
V (FV)	field vane (LV-laboratory vane test)
γ	unit weight

Tests anisotropically consolidated prior to shear are shown as CAD, CAU. 1.

COHESIVE SOILS												
Consistency												
Term	Undrained Shear Strength (kPa)	SPT 'N' ^{1,2} (blows/0.3m)										
Very Soft	<12	0 to 2										
Soft	12 to 25	2 to 4										
Firm	25 to 50	4 to 8										
Stiff	50 to 100	8 to 15										
Very Stiff	100 to 200	15 to 30										
Hard	>200	>30										

1. SPT 'N' in accordance with ASTM D1586, uncorrected for overburden pressure effects; approximate only.

SPT 'N' values should be considered ONLY an approximate guide to consistency; for sensitive clays (e.g., Champlain Sea clays), the N-value approximation for consistency terms does NOT apply. Rely on direct 2 measurement of undrained shear strength or other manual observations.

Water Content											
Term	Description										
w < PL	Material is estimated to be drier than the Plastic Limit.										
w ~ PL	Material is estimated to be close to the Plastic Limit.										
w > PL	Material is estimated to be wetter than the Plastic Limit.										

Unless otherwise stated, the symbols employed in the report are as follows:

I.	GENERAL	(a) w	Index Properties (continued)
π	3.1416	w _l or LL	liquid limit
ln x	natural logarithm of x	w _p or PL	plastic limit
log ₁₀	x or log x, logarithm of x to base 10	Ip OF PI	plasticity index = $(W_l - W_p)$
y t	time		shrinkage limit
		IL	liquidity index = $(w - w_p) / I_p$
		lc	consistency index = $(w_l - w) / I_p$
		emax	void ratio in loosest state
		emin	void ratio in densest state
II.	STRESS AND STRAIN	ID	(formerly relative density) $(e_{max} - e_{min})$
	aboar atrain	(b)	Hydroulia Proportion
Ŷ	shear sharin	(D) b	hydraulic head or potential
Δ S	linear strain	a a	rate of flow
e Ev	volumetric strain	ч V	velocity of flow
n	coefficient of viscosity	i	hydraulic gradient
υ	Poisson's ratio	k	hydraulic conductivity
σ	total stress		(coefficient of permeability)
σ'	effective stress ($\sigma' = \sigma - u$)	j	seepage force per unit volume
σ'_{vo}	initial effective overburden stress		
σ1, σ2, σ3	principal stress (major, intermediate,	(c)	Consolidation (one-dimensional)
	1111101)	(C) Co	compression index
Ooct	mean stress or octahedral stress	Ct	(normally consolidated range)
0001	$= (\sigma_1 + \sigma_2 + \sigma_3)/3$	Cr	recompression index
τ	shear stress		(over-consolidated range)
u	porewater pressure	Cs	swelling index
E	modulus of deformation	Cα	secondary compression index
G	shear modulus of deformation	mv	coefficient of volume change
ĸ	bulk modulus of compressibility	Cv	direction)
		Ch	direction)
		Tv	time factor (vertical direction)
III.	SOIL PROPERTIES	U	degree of consolidation
(2)	Index Properties	σ΄ρ	pre-consolidation stress
(a)	hulk density (bulk unit weight)*	UCK	over-consolidation ratio = σ_p / σ_{vo}
$D_{4}(\lambda^{4})$	dry density (dry unit weight)	(d)	Shear Strength
$\rho_{u}(\gamma_{w})$	density (unit weight) of water	τρ. τr	peak and residual shear strength
ρ(γs)	density (unit weight) of solid particles	φ'	effective angle of internal friction
γ'	unit weight of submerged soil	δ	angle of interface friction
	$(\gamma' = \gamma - \gamma_w)$	μ	coefficient of friction = tan δ
D _R	relative density (specific gravity) of solid	C'	effective cohesion
-	particles ($D_R = \rho_s / \rho_w$) (formerly G_s)	Cu, Su	undrained shear strength ($\phi = 0$ analysis)
e		p n/	mean total stress $(\sigma_1 + \sigma_3)/2$
S	degree of saturation	p D	$(\sigma_1 - \sigma_2)/2$ or $(\sigma_1 - \sigma_2)/2$
0		Ч Qu	compressive strength ($\sigma_1 - \sigma_3$)
		St	sensitivity
* Donoi	ty symbol is a Unit weight symbol is	Notes: 1	$r = c' + c' \tan \phi'$
where	$\gamma = \rho q$ (i.e. mass density multiplied by	2	shear strength = (compressive strength)/2
accele	eration due to gravity)		(

PROJECT: 1773654 (1000)

LOCATION: SEE BOREHOLE LOCATION PLAN

RECORD OF BOREHOLE: BH18F-1

SHEET 1 OF 1 DATUM:

BORING DATE: November 22, 2019

HAMMER TYPE: AUTOMATIC

SF	PT/[SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm HAMMER TYPE: AUTOMATIC										YPE: AUTOMATIC					
Щ	1	q	SOIL PROFILE			SÆ	AMPLES	ES	DYNAMIC PENETRA RESISTANCE, BLOV	HYDRAULIC CC k, cm/s	/ITY,	, T	-1ġ				
SCAL		METF				Ř		3m	20 40	20 40 60 80 10 ⁶			⁻⁵ 10 ⁻⁴	10-3	_⊥	STIN	
PTH		ING	DESCRIPTION	TAP	ELEV.	MBE	ΥPE	NS/0	SHEAR STRENGTH	nat V. + Q-		WATER CO	NTENT P	ERCENT		B. TE	STANDPIPE INSTALLATION
DE		BOR		STRA	(m)	₽	-	BLO			Ĭ	Wp I		WI		LAR	
			GROUND SURFACE	0,					20 40	60 80		10 20	30	40			
- 0			TOPSOIL (51mm thick)		8:89						1						
-			FILL - (CL) SILTY CLAY, some sand, some gravel; brown, rootlets; cohesive,			1	SS	5				0					
			w~PL, firm														
- 1						2	SS	7				0					-
																	-
			FILL - (OH) clayey ORGANIC SILT,		1.37												-
			some sand; dark brown; cohesive, w>PL, very stiff			3	22	17									
~								''					·				-
2			(CL/ML) SILTY CLAY to CLAYEY SILT		2.13												-
			some sand some gravel; brown,														
			hard			4	SS	15				0					
		JGER															-
3	ų	EM AL					-										-
	NIMC	ID ST				5	SS	31				οH					
	Σ	m SOI															
		102 m															-
4					4.04												-
			gravel; grey (TILL); cohesive, w <pl,< td=""><td></td><td>4.04</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></pl,<>		4.04												-
			very stiff														
																	-
5						6	55	20				U I					-
Ŭ																	-
																	:
																	-
6							-										-
						7	SS	19				0					-
			END OF BOREHOLE	1914 1	6.55												:
			NOTE:														
7			1. Borehole was drv upon completion of														-
			drilling.														:
																	-
																	-
8																	_
																	-
																	:
0																	-
9																	
																	:
																	-
10																	-
_	1						I						[
DE	EPT	ΉS	CALE						S GOL	DER						LC)GGED:
1:	1:50 CHECKED:																

PROJECT: 1773654 (1000)

S:\CLIENTS\HDR_CORPORATION\BRAMPTON\02_DATA\GINT\1773654.GPJ GAL-MIS.GDT 20-1-23 NP

GTA-BHS 001

1:50

LOCATION: SEE BOREHOLE LOCATION PLAN

RECORD	OF BOREHOLE:	BH18F-2
RECORD	OF BOREHOLE:	BH18F-2

SHEET 1 OF 1 DATUM:

BORING DATE: November 22, 2019

HAMMER TYPE: AUTOMATIC

CHECKED:

SPT/DCPT HAMMER: MASS, 64kg; DROP, 760mm DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES DEPTH SCALE METRES BORING METHOD ADDITIONAL LAB. TESTING PIEZOMETER STRATA PLOT 40 60 80 10⁻⁶ 10⁻⁵ 10-4 10⁻³ OR BLOWS/0.3m 20 NUMBER STANDPIPE ELEV. ТҮРЕ SHEAR STRENGTH nat V. + Q - ● Cu, kPa rem V. ⊕ U - O WATER CONTENT PERCENT DESCRIPTION INSTALLATION DEPTH -0^W WpH - WI (m) 40 60 80 10 20 30 40 GROUND SURFACE C TOPSOIL (64mm thick) 8:88 FILL - (CL) SILTY CLAY, some sand, SS 4 0 1 some gravel; brown; cohesive, w~PL, soft to firm -Rootlets found between the depths of 0 m and 0.61 m 2 SS 6 0 SS 0 3 8 2 Bentonite (CL/ML) SILTY CLAY to CLAYEY SILT, 2.13 some sand, some gravel; brown (TILL); cohesive, w<PL, very stiff SS 0 4 25 3 ∑ January 7, 2020 5 SS 31 0 SOLID STEM MINIMOLE 4 (CL) SILTY CLAY, trace to some sand, trace gravel; grey; cohesive, w~PL to w>PL, very stiff to stiff 4.04 1.20 E Sand 102 6 SS 20 Ð -5 6 Sand and Screen SS 0 7 15 7 SS 13 8 0 8 END OF BOREHOLE 8.08 NOTES: 1. Borehole was dry upon completion of drilling. 9 2. Groundwater level measured in monitoring well as follows: Depth (m) Elevation (m) 3.17 Date 07-Jan-20 10 \diamond DEPTH SCALE GOLDER LOGGED:

APPENDIX C

MECP Water Well Database Information

MAP KEY

PLAN LEGEND

Development Boundary

- Shallow Dug or Bored <10 m
- Sandpoint
- 0 Deep Bored Well >10 m
- Drilled Overburden Well
- Test or Observation Well
- Drilled Bedrock Well
- Municipal Observation Well
- Municipal / Public Supply

- \blacksquare Test Pit
- Dewatering Well ۲
- Dewatering Point
- Test Borehole 0
- Monitoring Well 0
- X Record of Abandonment
- 2 Information Unrecorded

REFERENCES & DISCLAIMERS

Ministry of Environment Water Well Information System, Queen's Printer

Location and elevations of mapped wells are subject to revision based on drill record or field verification Boundaries between soil strata have been determined only at well and test well locations. Between the vells and test wells, boundaries are not proven but are assumed from geological evidence

Alignment of orthographic imagery is approximated to select features on Datum. Away from points of alignment the orthographic image may be dimensionally skewed or projected off the map Datum plane.

0	200	400	600 m
1:10000			
Plotted 11x	17" Tabloid	Projection is UT	M NAD 83 Zone 17

CLIENT HDR CORPORATION

PROJECT HYDROGEOLOGICAL AND GEOTECHNICAL INVESTIGATIONS AIRPORT ROAD FROM BRAYDON BLVD TO COUNTRYSIDE DR CITY OF BRAMPTON, ONTARIO

RECORDED WELLS

CONSULTANT YYYY-MM-DD 2020-04-06 DESIGNED PREPARED JPR GOLDER REVIEWED DPD APPROVED AO PROJECT NO CONTROL FIGURE REV. 1773654 0003 ____

LABEL	CON	DATE	EASTING	ELEV	WTR FND	CR TOP LEN	SWL	RATE	TIME	PL	DRILLER	TYPE	WELL NAME
	LOT	mmm-yr	NORTHING	masl	mbgl Qu	mbgl m	mbgl	L/min	min	mbgl	METHOD	STAT	DESCRIPTION OF MATERIALS
4901523	6	Jul-49	601960	209.7	18.0 Fr		5.2	91			4620	WS	MOE# 4901523
	12		4847099								СТ	MU	0.0 TPSL 0.6 CLAY GRVL BLDR 1.5 CLAY GRVL
													HPAN 4.0 HPAN CLAY GRVL 6.1 CLAY GRVL 18.0
													CLAY 24.7 CLAY GRVL 25.0 HPAN CLAY GRVL 28.0
1001501						10.1.1.5							BLUE SHLE 28.7
4901524	6	Oct-62	601942	204.5	14.6 ⊢r	13.1 -1.5	-3.0	91	240	5.5	4610	WS	
	12		4847229								CI	DO	0.0 BRWN CLAY 3.7 BLUE CLAY 14.6 MSND GRVL
4001526	6	Apr-63	601826	210.6	22.9 Er		3.0	15			1307	WS	10.2 MOE# 4901526
4301320	13	Арі-00	4847331	210.0	22.311		5.0	40			BR		0.0 BRWN TPSI. CLAY 3.7 GREY CLAY 22.3 GRVI
	10		4047001								DIX	00	22.9
4901531	6	Sep-67	601418	214.9	29.0 Fr		4.0	14	120	29.6	2643	WS	MOE# 4901531
	14		4847647								СТ	ST	0.0 BRWN MSND CLAY 3.0 BLUE CLAY 12.2 MSND
													GRVL 21.9 GRVL CLAY 23.8 BLUE SHLE 29.6
4901532	6	Jul-66	600523	230.1	19.5 Fr		9.1	14			1307	WS	MOE# 4901532
	15		4848245								BR	DO	0.0 BRWN TPSL CLAY 3.7 GREY CLAY 13.7 MSND
1001501											1010		14.0 GREY CLAY 17.7 GREY SHLE 19.5
4901534	6	May-52	600355	221.0	22.9 Fr		9.1	14	120	24.4	4610	WS	
	16		4848720								CI	DO	0.0 BRWN CLAY 9.1 BLUE CLAY 18.3 BLUE SHLE
4002742	7	Aug 62	602155	200.7	23.5 Er		ND				1612	W/S	24.4 MOE# 4902742
4302742	12	Aug-02	4847183	209.1	23.511		INIX				CT		0.0 TPSI 0.6 BLUE CLAY 20.1 SAND 22.6 GRVI
	12		4047 100								01	00	23.5
4902743	7	Nov-65	602010	201.2	23.2 Fr		1.5	9	150	23.2	1612	WS	MOE# 4902743
	13		4847308								СТ	DO	0.0 TPSL 0.6 BRWN CLAY 14.0 BLUE CLAY 22.6
													BLUE GRVL 23.2
4902744	7	Sep-67	601980	209.7	21.9 Fr	20.7 -1.2	4.6	27	180	19.8	3512	WS	MOE# 4902744
	13		4847458								СТ	DO	0.0 TPSL 0.3 YLLW CLAY 5.5 BLUE CLAY 21.3
4000740	7	Cam 05	000040	000.4	10 7 Fr		0.0	45			4007	14/0	SAND GRVL 22.9
4902749	15	Sep-65	600810	223.1	13.7 Fr		9.8	45			1307	00	
4902751	7	Sen-61	600495	223.7	10 7 Fr		24	5	60	10.7	4610	WS	0.0 BRWN 1PSL 3.7 GRET CLAT 13.7 GRVL 13.2
4302701	, 16	Ocp-01	4848768	220.1	10.7 11		2.7	0	00	10.7	CT		0.0 PRDG 4.6 BLDR 10.1 SAND GRVL CLAY 10.7
4902752	7	Mar-64	600875	220.1	13.7 Fr		9.1				1307	WS	MOE# 4902752
	16		4848868								BR	DO	0.0 BRWN TPSL 5.5 GREY CLAY 12.2 GREY SHLE
												-	13.7
4903193	6	Mar-69	600975	220.4	19.2 Fr		9.1				1307	WS	MOE# 4903193
	15		4848113								BR	DO	0.0 BRWN TPSL 3.7 GREY CLAY 18.9 GREY SHLE
													19.2
4903633	7	Jun-71	601515	214.0	11.0 Fr		4.6	45	60	11.0	1307	WS	MOE# 4903633
	14		4847923								BR	DO	0.0 BRWN OBDN MSND 3.7 GREY CLAY 11.0 GREY
4002000	7	Oct 70	604405	214.0	10 E E-		7.0	207	60	10 7	1207	MC	MSND 12.2
4903900	1	001-72	001495	214.9	19.3 Fr		0.1	221	60	10.7	1307	VV S	
	14		4041023								DL	00	SAND 19.5

LABEL	CON	DATE	EASTING	ELEV	WTR FND	CR TOP LEN	SWL	RATE	TIME	PL DRILLER	TYPE	WELL NAME
	LOT	mmm-yr	NORTHING	masl	mbgl Qu	mbgl m	mbgl	L/min	min	mbgl METHOD	STAT	DESCRIPTION OF MATERIALS
4906814	6	Sep-87	601519	213.7	23.2 Fr	22.9 -2.4	FLW	336	5999	17.7 3903	TH	MOE# 4906814
	14	00p 0.	4847648							RC	MU	0.0 BRWN CLAY STNS DNSE 4.3 GREY CLAY STNS
												LYRD 23.2 GREY SAND GRVL LYRD 25.0 GREY SAND
												GRVL LYRD 25.3 GREY CLAY SHLE LYRD 25.6
4907078	6	Aug-88	601681	213.4	20.1 Fr	15.2 -2.4	NR	18	480	3903	TH	MOE# 4907078
	14	0	4847319							RC	MU	0.0 BRWN TPSL DNSE 0.3 GREY CLAY SAND LYRD
												17.7 GREY SAND GRVL LYRD 20.1
4909087	6	Oct-02	600835	223.7			NR			1663	AB	MOE# 4909087
	15		4848520							OTH	NU	0.0
4909212	6	Jul-03	601970	206.3			NR			4011	AB	MOE# 4909212
	13		4847191							-	NU	0.0
4909328	6	Dec-03	600672	225.2			NR			6875	AB	MOE# 4909328
	15		4848589							-	NU	0.0
4909642	7	Sep-04	602014	207.0			NR			6607	AB	MOE# 4909642
	12		4847188							BR	NU	0.0
4909703	8	Mar-05	601902	204.5		2.1 -1.5	NR			7147	AB	MOE# 4909703 TAG#A019621
	13		4847203							-	-	0.0 3.7
4909749	8	Jan-05	601902	202.1		2.1 -1.5	NR			7147	OW	MOE# 4909749 TAG#A019621
	13		4847203							OTH	NU	0.0 BLCK SILT TPSL 0.3 BRWN SILT CLAY 3.7
4909903	8	Aug-05	600500	220.4	2.1 Un		NR			6875	AB	MOE# 4909903
	10		4848054							DG	NU	0.0
7041664	6	Feb-07	600681	222.2	3.0 Fr		NR			7147	AB	MOE# 7041664
	15		4847804							-	-	0.0 14.0 11.9 10.1
7042125	6	Feb-07	601866	212.8			NR			4011	AB	MOE# 7042125
	11		4847051							-	-	0.0 21.6 12.2 11.9 1.8 1.8 0.0
7043808	6	Apr-07	600645	221.0	3.0 Fr		NR			7147	AB	MOE# 7043808
	15		4847873							OTH	-	0.0 4.9
7046592		May-07	600826	221.9	1.5 Fr		NR			6875	AB	MOE# 7046592
			4848298							DG	NU	0.0
7049656	6	Jul-07	601040	218.5			1.5			7219	AB	MOE# 7049656 TAG#A060383
	14		4848067							-	NU	0.0
7143358	7	Jan-10	600642	218.2			NR			3108	-	MOE# 7143358
	16		4848632							-	NU	0.0
/143359	1	Jan-10	600535	214.9			NR			3108	-	MOE# 7143359
7400744	16	D 10	4848728	040.0						-	NU	0.0
/160/14		Dec-10	601063	218.8			NR			6988	-	MOE# /160/14 IAG#A098140
7404504		lan 10	4848906	004.0	0.4.1.1.	04.00				-	-	0.0 NOE# 7494594 TAO#A499594
/181534		Jan-12	600745	221.0	9.1 UN	9.1 -3.0	NR			1412	000	
			4848652							-	MO	0.0 BRWN SILT CLAY DNSE 8.8 GREY SILT CLAY
7101525		lan 10	600906	214.0	6.1.1.	42.20				7470	0.11	DINSE 12.2
1 10 1000		Jan-12	000090	214.0	6.1 UN	4.3 -3.0	INK			1412		
			4040/0/							-	NU	0.0 BRWIN SILT CLAT PCKD 4.0 GRET SHLE HARD
7181526		lan 10	600961	210.2	24110	01 20	ND			7/70	0\//	1.0 MOE# 7181536 TAC#A128626
101000		Jail-12	1848720	210.3	2.4 011	9.1-3.0	INF			1412	MO	
			4040730							-	NO	

LABEL		DATE		ELEV masl	WTR FND	CR TOP LEN	SWL	RATE	TIME	PL mbal		TYPE STAT	WELL NAME DESCRIPTION OF MATERIALS
7185748	7	Aug-12	600902	223.1	3.0 Fr	ing in	NR	_/		məği	7147	AB	MOE# 7185748
	16		4848909								-	-	0.0
7188316	7	Sep-12	602108	208.8			NR				7147	-	MOE# 7188316
	12		4847142								-	-	0.0
7188317	7	Sep-12	602125	208.8			NR				7147	-	MOE# 7188317
	12		4847179								-	-	0.0
7232586		Oct-14	601029	220.7			NR				4102	-	MOE# 7232586
			4848918								-	-	0.0
7233095	6	Jul-14	601879	210.3		21.3 -1.5	NR	23	80	14.6	1663	WS	MOE# 7233095 TAG#A147005
	13		4847277								RC	DO	0.0 BRWN TPSL 0.3 BRWN CLAY SNDY GRVL 4.3
													GREY CLAY SLTY GRVL 7.6 GREY CLAY SNDY GRVL
													22.9 GREY SAND GRVL CLAY 23.2 GREY CLAY GRVL
													36.6 GREY SHLE 36.9
7241597		May-15	600853	210.6			NR				4102	AB	MOE# 7241597
			4848730								-	-	0.0
7259860		Dec-15	600836	223.4			NR				7230	-	MOE# 7259860 TAG#A199763
			4848548								-	-	0.0

QUALITY:			TYPE:		USE:			METHOD :		
Fr	Fresh	WS	Water Supply	CO	Comercial	NU	Not Used	СТ	Cable Tool	
Mn	Mineral	AQ	Abandoned Quality	DO	Domestic	IR	Irrigation	JT	Jetting	
Sa	Salty	AS	Abandoned Supply	MU	Municipal	AL	Alteration	RC	Rotary Conventional	
Su	Sulphur	AB	Abandonment Record	PU	Public	MO	Monitoring	RA	Rotary Air	
	Unrecorded	ΤH	Test Hole or Observation	ST	Stock	-	Not Recorded	BR	Boring	

Easting and Northings UTM NAD 83 Zone 17, Translated from Recorded UTM NAD, subject to Field Verified Location or Improved Location Accuracy. Records Copyright Ministry of Environment Queen's Printer. Selected information tabulated to metric with changes and corrections subject to Driller's Records.

golder.com